Suppr超能文献

一种基于密度聚类算法(DBSCAN)的后处理多径/非视距偏差估计方法

A Post-Processing Multipath/NLoS Bias Estimation Method Based on DBSCAN.

作者信息

Guo Yihan, Zocca Simone, Dabove Paolo, Dovis Fabio

机构信息

Department of Electronics and Telecommunications, Politecnico di Torino, 10129 Turin, Italy.

Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, 10129 Turin, Italy.

出版信息

Sensors (Basel). 2024 Apr 19;24(8):2611. doi: 10.3390/s24082611.

Abstract

Positioning based on Global Navigation Satellite Systems (GNSSs) in urban environments always suffers from multipath and Non-Line-of-Sight (NLoS) effects. In such conditions, the GNSS pseudorange measurements can be affected by biases disrupting the GNSS-based applications. Many efforts have been devoted to detecting and mitigating the effects of multipath/NLoS, but the identification and classification of such events are still challenging. This research proposes a method for the post-processing estimation of pseudorange biases resulting from multipath/NLoS effects. Providing estimated pseudorange biases due to multipath/NLoS effects serves two main purposes. Firstly, machine learning-based techniques can leverage accurately estimated pseudorange biases as training data to detect and mitigate multipath/NLoS effects. Secondly, these accurately estimated pseudorange biases can serve as a benchmark for evaluating the effectiveness of the methods proposed to detect multipath/NLoS effects. The estimation is achieved by extracting the multipath/NLoS biases from pseudoranges using a clustering algorithm named Density-Based Spatial Clustering of Applications with Noise (DBSCAN). The performance is demonstrated using two real-world data collections in multipath/NLoS scenarios for both static and dynamic conditions. Since there is no ground truth for the pseudorange biases due to the multipath/NLoS scenarios, the proposed method is validated based on the positioning performance. Positioning solutions are computed by subtracting the estimated biases from the raw pseudoranges and comparing them to the ground truth.

摘要

在城市环境中,基于全球导航卫星系统(GNSS)进行定位时,始终会受到多径和非视距(NLoS)效应的影响。在这种情况下,GNSS伪距测量可能会受到偏差的影响,从而干扰基于GNSS的应用。许多研究致力于检测和减轻多径/NLoS的影响,但此类事件的识别和分类仍然具有挑战性。本研究提出了一种用于对多径/NLoS效应导致的伪距偏差进行后处理估计的方法。提供因多径/NLoS效应而产生的估计伪距偏差有两个主要目的。首先,基于机器学习的技术可以将准确估计的伪距偏差作为训练数据,以检测和减轻多径/NLoS效应。其次,这些准确估计的伪距偏差可以作为评估所提出的检测多径/NLoS效应方法有效性的基准。该估计是通过使用一种名为基于密度的带噪声空间聚类应用(DBSCAN)的聚类算法从伪距中提取多径/NLoS偏差来实现的。使用在多径/NLoS场景下针对静态和动态条件的两个真实世界数据集展示了该方法的性能。由于在多径/NLoS场景下不存在伪距偏差的地面真值,因此基于定位性能对所提出的方法进行验证。通过从原始伪距中减去估计偏差并将其与地面真值进行比较来计算定位解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2de6/11054747/f9918009011a/sensors-24-02611-g001.jpg

相似文献

1
A Post-Processing Multipath/NLoS Bias Estimation Method Based on DBSCAN.
Sensors (Basel). 2024 Apr 19;24(8):2611. doi: 10.3390/s24082611.
2
Multipath/NLOS Detection Based on K-Means Clustering for GNSS/INS Tightly Coupled System in Urban Areas.
Micromachines (Basel). 2022 Jul 17;13(7):1128. doi: 10.3390/mi13071128.
3
GNSS NLOS Signal Classification Based on Machine Learning and Pseudorange Residual Check.
Front Robot AI. 2022 May 5;9:868608. doi: 10.3389/frobt.2022.868608. eCollection 2022.
4
NLOS Multipath Classification of GNSS Signal Correlation Output Using Machine Learning.
Sensors (Basel). 2021 Apr 3;21(7):2503. doi: 10.3390/s21072503.
5
NLOS Correction/Exclusion for GNSS Measurement Using RAIM and City Building Models.
Sensors (Basel). 2015 Jul 17;15(7):17329-49. doi: 10.3390/s150717329.
6
GNSS Multipath Detection Using Continuous Time-Series C/N.
Sensors (Basel). 2020 Jul 21;20(14):4059. doi: 10.3390/s20144059.
7
Self-Position Determination Based on Array Signal Subspace Fitting under Multipath Environments.
Sensors (Basel). 2023 Nov 23;23(23):9356. doi: 10.3390/s23239356.
10
A New Method for GNSS Multipath Mitigation with an Adaptive Frequency Domain Filter.
Sensors (Basel). 2018 Aug 1;18(8):2514. doi: 10.3390/s18082514.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验