Suppr超能文献

基于K均值聚类的城区GNSS/INS紧耦合系统多径/非视距检测

Multipath/NLOS Detection Based on K-Means Clustering for GNSS/INS Tightly Coupled System in Urban Areas.

作者信息

Wang Hao, Pan Shuguo, Gao Wang, Xia Yan, Ma Chun

机构信息

School of Instrument Science and Engineering, Southeast University, Nanjing 210096, China.

Key Laboratory of Micro-Inertial Instrument and Advanced Navigation Technology, Southeast University, Nanjing 210096, China.

出版信息

Micromachines (Basel). 2022 Jul 17;13(7):1128. doi: 10.3390/mi13071128.

Abstract

Due to the massive multipath effects and non-line-of-sight (NLOS) signal receptions, the accuracy and reliability of GNSS positioning solution can be severely degraded in a highly urbanized area, which has a negative impact on the performance of GNSS/INS integrated navigation. Therefore, this paper proposes a multipath/NLOS detection method based on the K-means clustering algorithm for vehicle GNSS/INS integrated positioning. It comprehensively considers different feature parameters derived from GNSS raw observations, such as the satellite-elevation angle, carrier-to-noise ratio, pseudorange residual, and pseudorange rate consistency to effectively classify GNSS signals. In view of the influence of different GNSS signals on positioning results, the K-means clustering algorithm is exploited to divide the observation data into two main categories: direct signals and indirect signals (including multipath and NLOS signals). Then, the multipath/NLOS signal is separated from the observation data. Finally, this paper uses the measured vehicle GNSS/INS observation data, including offline dataset and online dataset, to verify the accuracy of signal classification based on double-differenced pseudorange positioning. A series of experiments conducted in typical urban scenarios demonstrate that the proposed method could ameliorate the positioning accuracy significantly compared with the conventional GNSS/INS integrated navigation. After excluding GNSS outliers, the positioning accuracy of the offline dataset is improved by 16% and 85% in the horizontal and vertical directions, respectively, and the positioning accuracy of the online dataset is improved by 21% and 41% in the two directions. This method does not rely on external geographic information data and other sensors, which has better practicability and environmental adaptability.

摘要

由于大量的多径效应和非视距(NLOS)信号接收,在高度城市化地区,全球导航卫星系统(GNSS)定位解算的准确性和可靠性会严重下降,这对GNSS/惯性导航系统(INS)组合导航的性能产生负面影响。因此,本文提出一种基于K均值聚类算法的多径/NLOS检测方法,用于车辆GNSS/INS组合定位。该方法综合考虑了从GNSS原始观测中导出的不同特征参数,如卫星仰角、载波噪声比、伪距残差和伪距率一致性,以有效地对GNSS信号进行分类。鉴于不同GNSS信号对定位结果的影响,利用K均值聚类算法将观测数据分为两大类:直接信号和间接信号(包括多径信号和NLOS信号)。然后,从观测数据中分离出多径/NLOS信号。最后,本文使用实测的车辆GNSS/INS观测数据,包括离线数据集和在线数据集,基于双差伪距定位验证信号分类的准确性。在典型城市场景中进行的一系列实验表明,与传统的GNSS/INS组合导航相比,该方法可显著提高定位精度。在排除GNSS异常值后,离线数据集在水平和垂直方向的定位精度分别提高了16%和85%,在线数据集在这两个方向的定位精度分别提高了21%和41%。该方法不依赖外部地理信息数据和其他传感器,具有更好的实用性和环境适应性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1eb/9321141/f0a85bf9353d/micromachines-13-01128-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验