Department of Otorhinolaryngology and Head and Neck Surgery, All India institute of Medical Sciences, Bibinagar, Hyderabad, India.
Curr Gene Ther. 2024;24(3):208-216. doi: 10.2174/0115665232269742231213110937.
Hearing loss is a prevalent sensory impairment significantly affecting communication and quality of life. Traditional approaches for hearing restoration, such as cochlear implants, have limitations in frequency resolution and spatial selectivity. Optogenetics, an emerging field utilizing light-sensitive proteins, offers a promising avenue for addressing these limitations and revolutionizing hearing rehabilitation. This review explores the methods of introducing Channelrhodopsin- 2 (ChR2), a key light-sensitive protein, into cochlear cells to enable optogenetic stimulation. Viral- mediated gene delivery is a widely employed technique in optogenetics. Selecting a suitable viral vector, such as adeno-associated viruses (AAV), is crucial in efficient gene delivery to cochlear cells. The ChR2 gene is inserted into the viral vector through molecular cloning techniques, and the resulting viral vector is introduced into cochlear cells via direct injection or round window membrane delivery. This allows for the expression of ChR2 and subsequent light sensitivity in targeted cells. Alternatively, direct cell transfection offers a non-viral approach for ChR2 delivery. The ChR2 gene is cloned into a plasmid vector, which is then combined with transfection agents like liposomes or nanoparticles. This mixture is applied to cochlear cells, facilitating the entry of the plasmid DNA into the target cells and enabling ChR2 expression. Optogenetic stimulation using ChR2 allows for precise and selective activation of specific neurons in response to light, potentially overcoming the limitations of current auditory prostheses. Moreover, optogenetics has broader implications in understanding the neural circuits involved in auditory processing and behavior. The combination of optogenetics and gene delivery techniques provides a promising avenue for improving hearing restoration strategies, offering the potential for enhanced frequency resolution, spatial selectivity, and improved auditory perception.
听力损失是一种普遍存在的感觉障碍,严重影响交流和生活质量。传统的听力恢复方法,如人工耳蜗,在频率分辨率和空间选择性方面存在局限性。光遗传学作为一种新兴的利用光敏感蛋白的领域,为解决这些局限性和彻底改变听力康复提供了一个有前途的途径。本综述探讨了将光敏感蛋白 Channelrhodopsin-2 (ChR2) 引入耳蜗细胞以实现光遗传刺激的方法。病毒介导的基因传递是光遗传学中广泛应用的技术。选择合适的病毒载体,如腺相关病毒 (AAV),对于将基因有效地传递到耳蜗细胞至关重要。ChR2 基因通过分子克隆技术插入病毒载体,然后通过直接注射或圆窗膜传递将所得病毒载体引入耳蜗细胞。这允许在靶细胞中表达 ChR2 并随后具有光敏感性。或者,直接细胞转染提供了一种非病毒的 ChR2 传递方法。将 ChR2 基因克隆到质粒载体中,然后将其与转染剂(如脂质体或纳米颗粒)结合。将该混合物应用于耳蜗细胞,促进质粒 DNA 进入靶细胞并使 ChR2 表达。使用 ChR2 的光遗传刺激允许对光响应的特定神经元进行精确和选择性激活,这可能克服当前听觉假体的局限性。此外,光遗传学在理解涉及听觉处理和行为的神经回路方面具有更广泛的意义。光遗传学和基因传递技术的结合为改善听力恢复策略提供了一个有前途的途径,具有提高频率分辨率、空间选择性和改善听觉感知的潜力。