State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China.
School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, Jiangsu 215123, China.
Environ Sci Technol. 2024 May 21;58(20):8643-8653. doi: 10.1021/acs.est.4c00141. Epub 2024 Apr 27.
Antimicrobial nanomaterials frequently induce inflammatory reactions within lung tissues and prompt apoptosis in lung cells, yielding a paradox due to the inherent anti-inflammatory character of apoptosis. This paradox accentuates the elusive nature of the signaling cascade underlying nanoparticle (NP)-induced pulmonary inflammation. In this study, we unveil the pivotal role of nano-microflora interactions, serving as the crucial instigator in the signaling axis of NP-induced lung inflammation. Employing pulmonary microflora-deficient mice, we provide compelling evidence that a representative antimicrobial nanomaterial, silver (Ag) NPs, triggers substantial motility impairment, disrupts quorum sensing, and incites DNA leakage from pulmonary microflora. Subsequently, the liberated DNA molecules recruit caspase-1, precipitating the release of proinflammatory cytokines and activating N-terminal gasdermin D (GSDMD) to initiate pyroptosis in macrophages. This pyroptotic cascade culminates in the emergence of severe pulmonary inflammation. Our exploration establishes a comprehensive mechanistic axis that interlinks the antimicrobial activity of Ag NPs, perturbations in pulmonary microflora, bacterial DNA release, macrophage pyroptosis, and consequent lung inflammation, which helps to gain an in-depth understanding of the toxic effects triggered by environmental NPs.
抗菌纳米材料经常在肺部组织中引发炎症反应,并促使肺部细胞凋亡,这一现象产生了一个悖论,因为凋亡本身具有抗炎特性。这种悖论突出了纳米颗粒(NP)诱导的肺部炎症信号级联背后难以捉摸的本质。在这项研究中,我们揭示了纳米微生物相互作用的关键作用,它是 NP 诱导的肺部炎症信号轴中的关键启动子。通过使用肺部微生物缺陷小鼠,我们提供了令人信服的证据表明,一种代表性的抗菌纳米材料,银(Ag)纳米颗粒,会引发肺部微生物的大量运动障碍,破坏群体感应,并引发肺部微生物的 DNA 泄漏。随后,释放的 DNA 分子招募半胱天冬酶-1,引发促炎细胞因子的释放,并激活 N 端 Gasdermin D(GSDMD),从而引发巨噬细胞焦亡。这种细胞焦亡级联反应导致严重的肺部炎症。我们的研究建立了一个全面的机制轴,将 Ag NPs 的抗菌活性、肺部微生物的紊乱、细菌 DNA 的释放、巨噬细胞焦亡以及随后的肺部炎症联系起来,有助于深入了解环境纳米颗粒引发的毒性作用。