Suppr超能文献

iM-Seeker:一个通过自动化机器学习预测和评分 DNA i-motif 的网络服务器。

iM-Seeker: a webserver for DNA i-motifs prediction and scoring via automated machine learning.

机构信息

Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK.

Department of Computer Science, University of Exeter, Exeter EX4 4QF, UK.

出版信息

Nucleic Acids Res. 2024 Jul 5;52(W1):W19-W28. doi: 10.1093/nar/gkae315.

Abstract

DNA, beyond its canonical B-form double helix, adopts various alternative conformations, among which the i-motif, emerging in cytosine-rich sequences under acidic conditions, holds significant biological implications in transcription modulation and telomere biology. Despite recognizing the crucial role of i-motifs, predictive software for i-motif forming sequences has been limited. Addressing this gap, we introduce 'iM-Seeker', an innovative computational platform designed for the prediction and evaluation of i-motifs. iM-Seeker exhibits the capability to identify potential i-motifs within DNA segments or entire genomes, calculating stability scores for each predicted i-motif based on parameters such as the cytosine tracts number, loop lengths, and sequence composition. Furthermore, the webserver leverages automated machine learning (AutoML) to effortlessly fine-tune the optimal i-motif scoring model, incorporating user-supplied experimental data and customised features. As an advanced, versatile approach, 'iM-Seeker' promises to advance genomic research, highlighting the potential of i-motifs in cell biology and therapeutic applications. The webserver is freely available at https://im-seeker.org.

摘要

DNA 除了其典型的 B 型双链螺旋结构外,还采用了各种其他构象,其中在酸性条件下富含胞嘧啶的序列中出现的 i-motif 在转录调控和端粒生物学中具有重要的生物学意义。尽管认识到 i-motif 的重要作用,但预测 i-motif 形成序列的预测软件一直受到限制。为了解决这一差距,我们引入了 'iM-Seeker',这是一个创新的计算平台,用于预测和评估 i-motif。iM-Seeker 能够识别 DNA 片段或整个基因组中的潜在 i-motif,并根据胞嘧啶链数、环长度和序列组成等参数为每个预测的 i-motif 计算稳定性分数。此外,该网络服务器利用自动化机器学习 (AutoML) 轻松调整最佳 i-motif 评分模型,纳入用户提供的实验数据和定制特征。作为一种先进、多功能的方法,'iM-Seeker'有望推进基因组研究,突出 i-motif 在细胞生物学和治疗应用中的潜力。该网络服务器可免费在 https://im-seeker.org 获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7af8/11223794/78f7143223a3/gkae315figgra1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验