Suppr超能文献

利用卷积神经网络和分子动力学模拟区分稳定和不稳定的蛋白质。

Differentiating stable and unstable protein using convolution neural network and molecular dynamics simulations.

机构信息

Growdea Technologies Pvt. Ltd., Gurugram, Haryana 122004, India.

Pt. Neki Ram Sharma Government College, Rohtak, Haryana 124001, India.

出版信息

Comput Biol Chem. 2024 Jun;110:108081. doi: 10.1016/j.compbiolchem.2024.108081. Epub 2024 Apr 20.

Abstract

Protein stability is a critical aspect of molecular biology and biochemistry, hinges on an intricate balance of thermodynamic and structural factors. Determining protein stability is crucial for understanding and manipulating biological machineries, as it directly correlated with the protein function. Thus, this study delves into the intricacies of protein stability, highlighting its dependence on various factors, including thermodynamics, thermal conditions, and structural properties. Moreover, a notable focus is placed on the free energy change of unfolding (ΔG), change in heat capacity (ΔCp) with protein structural transition, melting temperature (Tm) and number of disulfide bonds, which are critical parameters in understanding protein stability. In this study, a machine learning (ML) predictive model was developed to estimate these four parameters using the primary sequence of the protein. The shortfall of available tools for protein stability prediction based on multiple parameters propelled the completion of this study. Convolutional Neural Network (CNN) with multiple layers was adopted to develop a more reliable ML model. Individual predictive models were prepared for each property, and all the prepared models showed results with high accuracy. The R (coefficient of determination) of these models were 0.79, 0.78, 0.92 and 0.92, respectively, for ΔG, ΔCp, Tm and disulfide bonds. A case study on stability analysis of two homologous proteins was presented to validate the results predicted through the developed model. The case study included in silico analysis of protein stability using molecular docking and molecular dynamic simulations. This validation study assured the accuracy of each model in predicting the stability associated properties. The alignment of physics-based principles with ML models has provided an opportunity to develop a fast machine learning solution to replace the computationally demanding physics-based calculations used to determine protein stability. Furthermore, this work provided valuable insights into the impact of mutation on protein stability, which has implications for the field of protein engineering. The source codes are available at https://github.com/Growdeatechnology.

摘要

蛋白质稳定性是分子生物学和生物化学的一个关键方面,取决于热力学和结构因素之间复杂的平衡。确定蛋白质稳定性对于理解和操纵生物机制至关重要,因为它直接与蛋白质功能相关。因此,本研究深入探讨了蛋白质稳定性的复杂性,强调了其对各种因素的依赖,包括热力学、热条件和结构特性。此外,还特别关注蛋白质结构转变时的折叠自由能变化(ΔG)、热容量变化(ΔCp)、熔点(Tm)和二硫键数量,这些是理解蛋白质稳定性的关键参数。在本研究中,开发了一种机器学习(ML)预测模型,使用蛋白质的一级序列来估计这四个参数。由于缺乏基于多个参数的蛋白质稳定性预测工具,推动了本研究的完成。采用多层卷积神经网络(CNN)来开发更可靠的 ML 模型。为每个特性分别准备了预测模型,所有准备的模型都显示出了高精度的结果。这些模型的 R(决定系数)分别为 0.79、0.78、0.92 和 0.92,用于表示 ΔG、ΔCp、Tm 和二硫键。通过对两个同源蛋白质稳定性的案例分析,验证了通过开发的模型预测的结果。该案例研究包括使用分子对接和分子动力学模拟进行蛋白质稳定性的计算机模拟分析。该验证研究确保了每个模型在预测与稳定性相关的特性方面的准确性。将基于物理原理的方法与 ML 模型相结合,为开发快速的机器学习解决方案提供了机会,以替代用于确定蛋白质稳定性的计算密集型物理计算。此外,这项工作还为突变对蛋白质稳定性的影响提供了有价值的见解,这对蛋白质工程领域具有重要意义。源代码可在 https://github.com/Growdeatechnology 上获得。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验