Department of Civil and Environmental Engineering, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA.
Department of Civil and Environmental Engineering, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA.
Water Res. 2024 Jun 15;257:121661. doi: 10.1016/j.watres.2024.121661. Epub 2024 Apr 22.
Rapid small-scale column tests (RSSCT) are used to study the removal of per- and polyfluoroalkyl substances (PFAS) for drinking water treatment by ion exchange. Breakthroughs of 15 emerging per- and perfluoroalkyl ether acids and six legacy perfluoroalkyl acid analogs are studied using a single-use PFAS-selective anion exchange resin (AER1) and a regenerable, generic anion exchange resin (AER2). The Bohart-Adams model was used to describe and predict breakthrough, with the modeled results reasonably aligned with RSSCT results in most cases, enabling shorter RSSCT duration for future applications. AER1 exhibited high uptake capacity with no breakthrough for 11 of the 21 tested PFAS during the 144,175 BV continuous operation, allowing compliance with the new National Primary Drinking Water Regulation in many application scenarios. AER2 exhibited much faster breakthroughs for most PFAS and is not a promising option for drinking water treatment. However, the summed PFAS capacity via model fit and total PFAS adsorbed via measurement were only <0.01 % of both resin capacities at full breakthrough, suggesting PFAS could only occupy a tiny portion of the ion exchange sites even for the PFAS-selective AER1. Ether group insertion in the PFAS group leads to later breakthrough, and linear isomers were better captured by the resins than the branched isomers. Overall, PFAS uptake capacity increases and kinetics decrease when the PFAS molecular volume increases. Regeneration using 10 % NaCl solutions partially released PFAS from AER2 but not from AER1, with more short-chain PFAS released than long-chain ones. Ether group insertion decreased the PFAS recoveries during the regeneration of AER2. The regenerated resins showed much faster breakthroughs than the pristine resins, making them unfavorable for drinking water treatment applications. Adsorption displacement of short-chain PFAS by long-chain PFAS was observed in pristine AER1, and post-regeneration leaching occurred for both resins, both phenomena making the resins a possible PFAS source in long-term use.
快速小规模柱测试(RSSCT)用于研究离子交换法去除饮用水中全氟和多氟烷基物质(PFAS)。使用一次性全氟烷基选择性阴离子交换树脂(AER1)和可再生通用阴离子交换树脂(AER2)研究了 15 种新兴的全氟和全氟烷氧基酸以及 6 种传统的全氟烷基酸类似物的穿透情况。Bohart-Adams 模型用于描述和预测穿透,在大多数情况下,模型结果与 RSSCT 结果相当吻合,这使得未来的应用能够缩短 RSSCT 持续时间。AER1 在 144,175BV 的连续运行中,对 21 种测试的 PFAS 中的 11 种没有穿透,表现出高的吸附容量,这使得在许多应用场景下都符合新的国家一级饮用水规定。AER2 对大多数 PFAS 的穿透速度更快,不是饮用水处理的理想选择。然而,通过模型拟合的总 PFAS 容量和通过测量吸附的总 PFAS 仅占树脂完全穿透时总容量的 <0.01%,这表明即使是对 PFAS 选择性的 AER1,PFAS 也只能占据离子交换位点的一小部分。PFAS 基团中醚基团的插入会导致穿透时间延迟,并且线性异构体比支链异构体更容易被树脂捕获。总的来说,随着 PFAS 分子体积的增加,PFAS 的吸附容量增加,动力学降低。使用 10%NaCl 溶液再生部分从 AER2 中释放了 PFAS,但没有从 AER1 中释放,短链 PFAS 的释放量大于长链 PFAS。醚基团的插入降低了 AER2 再生过程中 PFAS 的回收率。再生后的树脂比原始树脂具有更快的穿透速度,因此不适合饮用水处理应用。在原始 AER1 中观察到短链 PFAS 对长链 PFAS 的吸附置换,并且两种树脂都发生了再生后的浸出,这两种现象都使得树脂在长期使用中成为 PFAS 的潜在来源。