Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China.
College of Life Science and Technology, Jinan University, Guangzhou 510630, China.
Int J Cardiol. 2024 Jul 15;407:132105. doi: 10.1016/j.ijcard.2024.132105. Epub 2024 Apr 25.
Mitral valve disorder (MVD) stands as the most prevalent valvular heart disease. Presently, a comprehensive clinical index to predict mortality in MVD remains elusive. The aim of our study is to construct and assess a nomogram for predicting the 28-day mortality risk of MVD patients.
Patients diagnosed with MVD were identified via ICD-9 code from the MIMIC-III database. Independent risk factors were identified utilizing the LASSO method and multivariate logistic regression to construct a nomogram model aimed at predicting the 28-day mortality risk. The nomogram's performance was assessed through various metrics including the area under the curve (AUC), calibration curves, Hosmer-Lemeshow test, integrated discriminant improvement (IDI), net reclassification improvement (NRI), and decision curve analysis (DCA).
The study encompassed a total of 2771 patients diagnosed with MVD. Logistic regression analysis identified several independent risk factors: age, anion gap, creatinine, glucose, blood urea nitrogen level (BUN), urine output, systolic blood pressure (SBP), respiratory rate, saturation of peripheral oxygen (SpO), Glasgow Coma Scale score (GCS), and metastatic cancer. These factors were found to independently influence the 28-day mortality risk among patients with MVD. The calibration curve demonstrated adequate calibration of the nomogram. Furthermore, the nomogram exhibited favorable discrimination in both the training and validation cohorts. The calculations of IDI, NRI, and DCA analyses demonstrate that the nomogram model provides a greater net benefit compared to the Simplified Acute Physiology Score II (SAPSII), Acute Physiology Score III (APSIII), and Sequential Organ Failure Assessment (SOFA) scoring systems.
This study successfully identified independent risk factors for 28-day mortality in patients with MVD. Additionally, a nomogram model was developed to predict mortality, offering potential assistance in enhancing the prognosis for MVD patients. It's helpful in persuading patients to receive early interventional catheterization treatment, for example, transcatheter mitral valve replacement (TMVR), transcatheter mitral valve implantation (TMVI).
二尖瓣疾病(MVD)是最常见的瓣膜性心脏病。目前,尚无综合临床指数可预测 MVD 患者的死亡率。我们的研究旨在构建和评估预测 MVD 患者 28 天死亡率的列线图。
通过 MIMIC-III 数据库中的 ICD-9 代码确定 MVD 患者。使用 LASSO 方法和多变量逻辑回归识别独立风险因素,以构建预测 28 天死亡率风险的列线图模型。通过曲线下面积(AUC)、校准曲线、Hosmer-Lemeshow 检验、综合判别改善(IDI)、净重新分类改善(NRI)和决策曲线分析(DCA)评估列线图的性能。
该研究共纳入 2771 例 MVD 患者。逻辑回归分析确定了几个独立的风险因素:年龄、阴离子间隙、肌酐、血糖、血尿素氮(BUN)水平、尿量、收缩压(SBP)、呼吸频率、外周血氧饱和度(SpO)、格拉斯哥昏迷评分(GCS)和转移性癌症。这些因素被发现独立影响 MVD 患者的 28 天死亡率。校准曲线表明列线图具有足够的校准度。此外,该列线图在训练和验证队列中均表现出良好的区分度。IDI、NRI 和 DCA 分析的计算结果表明,与简化急性生理学评分 II(SAPSII)、急性生理学评分 III(APSIII)和序贯器官衰竭评估(SOFA)评分系统相比,该列线图模型提供了更大的净收益。
本研究成功确定了 MVD 患者 28 天死亡率的独立风险因素。此外,开发了一种列线图模型来预测死亡率,为提高 MVD 患者的预后提供了潜在帮助。它有助于说服患者接受早期介入导管治疗,例如经导管二尖瓣置换术(TMVR)、经导管二尖瓣植入术(TMVI)。