School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea.
J Appl Microbiol. 2024 May 1;135(5). doi: 10.1093/jambio/lxae104.
AIMS: This study aimed to develop an editable structural scaffold for improving drug development, including pharmacokinetics and pharmacodynamics of antibiotics by using synthetic compounds derived from a (hetero)aryl-quinoline hybrid scaffold. METHODS AND RESULTS: In this study, 18 CF3-substituted (hetero)aryl-quinoline hybrid molecules were examined for their potential antibacterial activity against Staphylococcus aureus by determining minimal inhibitory concentrations. These 18 synthetic compounds represent modifications to key regions of the quinoline N-oxide scaffold, enabling us to conduct a structure-activity relationship analysis for antibacterial potency. Among the compounds, 3 m exhibited potency against with both methicillin resistant S. aureus strains, as well as other Gram-positive bacteria, including Enterococcus faecalis and Bacillus subtilis. We demonstrated that 3 m disrupted the bacterial proton motive force (PMF) through monitoring the PMF and conducting the molecular dynamics simulations. Furthermore, we show that this mechanism of action, disrupting PMF, is challenging for S. aureus to overcome. We also validated this PMF inhibition mechanism of 3 m in an Acinetobacter baumannii strain with weaken lipopolysaccharides. Additionally, in Gram-negative bacteria, we demonstrated that 3 m exhibited a synergistic effect with colistin that disrupts the outer membrane of Gram-negative bacteria. CONCLUSIONS: Our approach to developing editable synthetic novel antibacterials underscores the utility of CF3-substituted (hetero)aryl-quinoline scaffold for designing compounds targeting the bacterial proton motive force, and for further drug development, including pharmacokinetics and pharmacodynamics.
目的:本研究旨在开发一种可编辑的结构支架,以改善药物开发,包括通过使用源自(杂)芳基-喹啉杂化支架的合成化合物来改善抗生素的药代动力学和药效学。
方法和结果:在这项研究中,通过测定最小抑菌浓度,研究了 18 种 CF3取代的(杂)芳基-喹啉杂化分子对金黄色葡萄球菌的潜在抗菌活性。这 18 种合成化合物代表了喹啉 N-氧化物支架关键区域的修饰,使我们能够进行抗菌效力的结构-活性关系分析。在这些化合物中,3 m 对耐甲氧西林金黄色葡萄球菌菌株以及其他革兰氏阳性菌,包括粪肠球菌和枯草芽孢杆菌均表现出活性。我们证明 3 m 通过监测质子动力势 (PMF) 并进行分子动力学模拟来破坏细菌的 PMF。此外,我们表明这种破坏 PMF 的作用机制对金黄色葡萄球菌来说是难以克服的。我们还在脂多糖较弱的鲍曼不动杆菌菌株中验证了 3 m 对 PMF 的抑制作用机制。此外,在革兰氏阴性菌中,我们证明 3 m 与破坏革兰氏阴性菌外膜的多粘菌素具有协同作用。
结论:我们开发可编辑合成新型抗菌药物的方法强调了 CF3取代的(杂)芳基-喹啉支架在设计针对细菌质子动力势的化合物以及进一步药物开发(包括药代动力学和药效学)方面的应用。
J Appl Microbiol. 2024-5-1
Bioorg Med Chem Lett. 2000-12-4
Microbiol Spectr. 2022-8-31
Bioorg Med Chem Lett. 2002-1-21
Bioorg Med Chem Lett. 2006-4-15