Department of Chemical and Biomolecular Engineering, University of Houstongrid.266436.3, Houston, Texas, USA.
Microbiol Spectr. 2022 Aug 31;10(4):e0202422. doi: 10.1128/spectrum.02024-22. Epub 2022 Aug 9.
Methicillin-resistant Staphylococcus aureus (MRSA) strains are tolerant of conventional antibiotics, making them extremely dangerous. Previous studies have shown the effectiveness of proton motive force (PMF) inhibitors at killing bacterial cells; however, whether these agents can launch a new treatment strategy to eliminate antibiotic-tolerant cells mandates further investigation. Here, using known PMF inhibitors and two different MRSA isolates, we showed that the bactericidal potency of PMF inhibitors seemed to correlate with their ability to disrupt PMF and permeabilize cell membranes. By screening a small chemical library to verify this correlation, we identified a subset of chemicals (including nordihydroguaiaretic acid, gossypol, trifluoperazine, and amitriptyline) that strongly disrupted PMF in MRSA cells by dissipating either the transmembrane electric potential (ΔΨ) or the proton gradient (ΔpH). These drugs robustly permeabilized cell membranes and reduced MRSA cell levels below the limit of detection. Overall, our study further highlights the importance of cellular PMF as a target for designing new bactericidal therapeutics for pathogens. Methicillin-resistant Staphylococcus aureus (MRSA) emerged as a major hypervirulent pathogen that causes severe health care-acquired infections. These pathogens can be multidrug-tolerant cells, which can facilitate the recurrence of chronic infections and the emergence of diverse antibiotic-resistant mutants. In this study, we aimed to investigate whether proton motive force (PMF) inhibitors can launch a new treatment strategy to eliminate MRSA cells. Our in-depth analysis showed that PMF inhibitors that strongly dissipate either the transmembrane electric potential or the proton gradient can robustly permeabilize cell membranes and reduce MRSA cell levels below the limit of detection.
耐甲氧西林金黄色葡萄球菌(MRSA)菌株对常规抗生素具有耐受性,因此极具危险性。先前的研究表明,质子动力势(PMF)抑制剂在杀死细菌细胞方面具有有效性;然而,这些药物是否能够启动一种新的治疗策略来消除抗生素耐受细胞仍需要进一步研究。在这里,我们使用已知的 PMF 抑制剂和两种不同的 MRSA 分离株,表明 PMF 抑制剂的杀菌效力似乎与其破坏 PMF 和使细胞膜通透性的能力相关。通过筛选一个小型化学文库来验证这种相关性,我们鉴定出一组化学物质(包括 nordihydroguaiaretic acid、gossypol、trifluoperazine 和 amitriptyline),它们通过耗散跨膜电势(ΔΨ)或质子梯度(ΔpH),强烈地破坏了 MRSA 细胞中的 PMF。这些药物会强烈地使细胞膜通透性增加,并将 MRSA 细胞水平降低到检测限以下。总的来说,我们的研究进一步强调了细胞 PMF 作为设计针对病原体的新型杀菌治疗方法的重要性。耐甲氧西林金黄色葡萄球菌(MRSA)作为一种主要的高毒力病原体出现,导致严重的医疗保健获得性感染。这些病原体可能是多药耐受细胞,这可以促进慢性感染的复发和多种抗生素耐药突变体的出现。在这项研究中,我们旨在研究质子动力势(PMF)抑制剂是否可以启动一种新的治疗策略来消除 MRSA 细胞。我们的深入分析表明,强烈耗散跨膜电势或质子梯度的 PMF 抑制剂可以强烈地使细胞膜通透性增加,并将 MRSA 细胞水平降低到检测限以下。