Civil Engineering Department, College of Engineering, Najran University, Najran 66426, Kingdom Of Saudi Arabia.
Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, Kuala Lumpur 54100, Malaysia.
Water Sci Technol. 2024 Apr;89(8):2149-2163. doi: 10.2166/wst.2024.092. Epub 2024 Mar 20.
This study employs diverse machine learning models, including classic artificial neural network (ANN), hybrid ANN models, and the imperialist competitive algorithm and emotional artificial neural network (EANN), to predict crucial parameters such as fresh water production and vapor temperatures. Evaluation metrics reveal the integrated ANN-ICA model outperforms the classic ANN, achieving a remarkable 20% reduction in mean squared error (MSE). The emotional artificial neural network (EANN) demonstrates superior accuracy, attaining an impressive 99% coefficient of determination () in predicting freshwater production and vapor temperatures. The comprehensive comparative analysis extends to environmental assessments, displaying the solar desalination system's compatibility with renewable energy sources. Results highlight the potential for the proposed system to conserve water resources and reduce environmental impact, with a substantial decrease in total dissolved solids (TDS) from over 6,000 ppm to below 50 ppm. The findings underscore the efficacy of machine learning models in optimizing solar-driven desalination systems, providing valuable insights into their capabilities for addressing water scarcity challenges and contributing to the global shift toward sustainable and environmentally friendly water production methods
本研究采用了多种机器学习模型,包括经典的人工神经网络(ANN)、混合 ANN 模型以及帝国主义竞争算法和情感人工神经网络(EANN),来预测淡水产量和蒸汽温度等关键参数。评估指标表明,集成 ANN-ICA 模型优于经典 ANN,平均平方误差(MSE)显著降低了 20%。情感人工神经网络(EANN)在预测淡水产量和蒸汽温度方面表现出更高的准确性,达到了令人印象深刻的 99%决定系数()。全面的比较分析还扩展到了环境评估,展示了太阳能淡化系统与可再生能源的兼容性。结果突出了所提出的系统在节约水资源和减少环境影响方面的潜力,总溶解固体(TDS)从超过 6000ppm 大幅降低到低于 50ppm。研究结果强调了机器学习模型在优化太阳能驱动淡化系统方面的有效性,为解决水资源短缺挑战和推动向可持续和环保的水生产方法转变提供了有价值的见解。