Department of Biomedical Engineering, McGill University, Montreal, Quebec, Canada; Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada; School of Nursing, Tianjin Medical University, Tianjin, China.
Department of Biomedical Engineering, McGill University, Montreal, Quebec, Canada; Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada.
Biomaterials. 2024 Sep;309:122582. doi: 10.1016/j.biomaterials.2024.122582. Epub 2024 Apr 18.
Cold atmospheric plasma (CAP) is a unique form of physical plasma that has shown great potential for cancer therapy. CAP uses ionized gas to induce lethal oxidative stress on cancer cells; however, the efficacy of CAP therapy continues to be improved. Here, we report an injectable hydrogel-mediated approach to enhance the anti-tumor efficacy of CAP by regulating the phosphorylation of eIF2α. We discovered that reactive oxygen and nitrogen species (ROS/RNS), two main anti-tumor components in CAP, can lead to lethal oxidative stress on tumor cells. Elevated oxidative stress subsequently induces eIF2α phosphorylation, a pathognomonic marker of immunogenic cell death (ICD). Trehalose, a natural disaccharide sugar, can further enhance CAP-induced ICD by elevating the phosphorylation of eIF2α. Moreover, injectable hydrogel-mediated delivery of CAP/trehalose treatment promoted dendritic cell (DC) maturation, initiating tumor-specific T-cell mediated anti-tumor immune responses. The combination therapy also supported the polarization of tumor-associated macrophages to an M1-like phenotype, reversing the immunosuppressive tumor microenvironment and promoting tumor antigen presentation to T cells. In combination with immune checkpoint inhibitors (i.e., anti-programmed cell death protein 1 antibody, aPD1), CAP/trehalose therapy further inhibited tumor growth. Importantly, our findings also indicated that this hydrogel-mediated local combination therapy engaged the host systemic innate and adaptive immune systems to impair the growth of distant tumors.
冷等离体子体(CAP)是一种独特的物理等离体子体形式,在癌症治疗方面显示出巨大的潜力。CAP 利用离子化气体诱导癌细胞产生致命的氧化应激;然而,CAP 疗法的疗效仍在不断提高。在这里,我们报告了一种可注射水凝胶介导的方法,通过调节 eIF2α 的磷酸化来增强 CAP 的抗肿瘤疗效。我们发现,CAP 中的两种主要抗肿瘤成分活性氧和活性氮(ROS/RNS)可导致肿瘤细胞产生致命的氧化应激。随后,氧化应激会诱导 eIF2α 的磷酸化,这是免疫原性细胞死亡(ICD)的一个特征性标志物。海藻糖是一种天然二糖,可以通过提高 eIF2α 的磷酸化进一步增强 CAP 诱导的 ICD。此外,CAP/海藻糖治疗的可注射水凝胶介导递药促进树突状细胞(DC)成熟,引发肿瘤特异性 T 细胞介导的抗肿瘤免疫反应。联合治疗还支持肿瘤相关巨噬细胞向 M1 样表型极化,逆转免疫抑制性肿瘤微环境并促进肿瘤抗原呈递给 T 细胞。与免疫检查点抑制剂(即抗程序性细胞死亡蛋白 1 抗体,aPD1)联合使用时,CAP/海藻糖治疗进一步抑制了肿瘤生长。重要的是,我们的研究结果还表明,这种水凝胶介导的局部联合治疗能够调动宿主的固有和适应性免疫系统,从而抑制远处肿瘤的生长。