Suppr超能文献

COVID-19 疫情的先进预测:利用集成模型、高级优化和分解技术。

Advanced forecasting of COVID-19 epidemic: Leveraging ensemble models, advanced optimization, and decomposition techniques.

机构信息

School of Computer Science, Guangdong Polytechnic Normal University, Guangzhou, 510665, China.

Information and Communication Technology Research Group, Scientific Research Center, Al-Ayen University, Thi-Qar, Nasiriyah, 64001, Iraq.

出版信息

Comput Biol Med. 2024 Jun;175:108442. doi: 10.1016/j.compbiomed.2024.108442. Epub 2024 Apr 16.

Abstract

In the global effort to address the outbreak of the new coronavirus pneumonia (COVID-19) pandemic, accurate forecasting of epidemic patterns has become crucial for implementing successful interventions aimed at preventing and controlling the spread of the disease. The correct prediction of the course of COVID-19 outbreaks is a complex and challenging task, mainly because of the significant volatility in the data series related to COVID-19. Previous studies have been limited by the exclusive use of individual forecasting techniques in epidemic modeling, disregarding the integration of diverse prediction procedures. The lack of attention to detail in this situation can yield worse-than-ideal results. Consequently, this study introduces a novel ensemble framework that integrates three machine learning methods (kernel ridge regression (KRidge), Deep random vector functional link (dRVFL), and ridge regression) within a linear relationship (L-K-d-R). The optimization of this framework is accomplished through a distinctive approach, specifically adaptive differential evolution and particle swarm optimization (A-DEPSO). Moreover, an effective decomposition method, known as time-varying filter empirical mode decomposition (TVF-EMD), is employed to decompose the input variables. A feature selection technique, specifically using the light gradient boosting machine (LGBM), is also implemented to extract the most influential input variables. The daily datasets of COVID-19 collected from two countries, namely Italy and Poland, were used as the experimental examples. Additionally, all models are implemented to forecast COVID-19 at two-time horizons: 10- and 14-day ahead (t+10 and t+14). According to the results, the proposed model can yield higher correlation coefficient (R) for both case studies: Italy (t+10 = 0.965, t+14 = 0.961) and Poland (t+10 = 0.952, t+14 = 0.940) than the other models. The experimental results demonstrate that the model suggested in this paper has outstanding results in various kinds of complex epidemic prediction situations. The proposed ensemble model demonstrates exceptional accuracy and resilience, outperforming all similar models in terms of efficacy.

摘要

在全球应对新型冠状病毒肺炎(COVID-19)大流行的努力中,准确预测疫情模式对于实施成功的干预措施以预防和控制疾病传播至关重要。准确预测 COVID-19 疫情的进程是一项复杂而具有挑战性的任务,主要是因为与 COVID-19 相关的数据系列波动很大。以前的研究受到在流行模型中仅使用个别预测技术的限制,忽略了整合各种预测程序。在这种情况下,不注重细节可能会导致不理想的结果。因此,本研究引入了一种新的集成框架,该框架在线性关系(L-K-d-R)中集成了三种机器学习方法(核岭回归(KRidge)、深度随机向量功能链接(dRVFL)和岭回归)。该框架通过一种独特的方法,即自适应差分进化和粒子群优化(A-DEPSO)进行优化。此外,还采用了一种有效的分解方法,即时变滤波器经验模态分解(TVF-EMD)来分解输入变量。还实施了一种特征选择技术,即使用轻梯度提升机(LGBM)来提取最具影响力的输入变量。该研究使用从意大利和波兰两个国家收集的 COVID-19 每日数据集作为实验示例。此外,所有模型都用于预测 COVID-19 在两个时间点:10 天和 14 天(t+10 和 t+14)。结果表明,对于两个案例研究,所提出的模型都可以产生更高的相关系数(R):意大利(t+10=0.965,t+14=0.961)和波兰(t+10=0.952,t+14=0.940)比其他模型。实验结果表明,本文提出的模型在各种复杂的疫情预测情况下具有出色的效果。所提出的集成模型表现出卓越的准确性和弹性,在效果方面优于所有类似的模型。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验