Suppr超能文献

结构网络拓扑与 Meige 综合征深部脑刺激治疗结果相关。

Structural network topologies are associated with deep brain stimulation outcomes in Meige syndrome.

机构信息

Medical School of Chinese PLA, Beijing, 100853, China; Department of Neurosurgery, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China.

Department of Neurosurgery, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China.

出版信息

Neurotherapeutics. 2024 Jul;21(4):e00367. doi: 10.1016/j.neurot.2024.e00367. Epub 2024 Apr 27.

Abstract

Deep brain stimulation (DBS) is an effective therapy for Meige syndrome (MS). However, the DBS efficacy varies across MS patients and the factors contributing to the variable responses remain enigmatic. We aim to explain the difference in DBS efficacy from a network perspective. We collected preoperative T1-weighted MRI images of 76 MS patients who received DBS in our center. According to the symptomatic improvement rates, all MS patients were divided into two groups: the high improvement group (HIG) and the low improvement group (LIG). We constructed group-level structural covariance networks in each group and compared the graph-based topological properties and interregional connections between groups. Subsequent functional annotation and correlation analyses were also conducted. The results indicated that HIG showed a higher clustering coefficient, longer characteristic path length, lower small-world index, and lower global efficiency compared with LIG. Different nodal betweennesses and degrees between groups were mainly identified in the precuneus, sensorimotor cortex, and subcortical nuclei, among which the gray matter volume of the left precentral gyrus and left thalamus were positively correlated with the symptomatic improvement rates. Moreover, HIG had enhanced interregional connections within the somatomotor network and between the somatomotor network and default-mode network relative to LIG. We concluded that the high and low DBS responders have notable differences in large-scale network architectures. Our study sheds light on the structural network underpinnings of varying DBS responses in MS patients.

摘要

深部脑刺激(DBS)是治疗梅杰综合征(MS)的有效方法。然而,DBS 的疗效在 MS 患者之间存在差异,导致这种差异的因素仍然不清楚。我们旨在从网络角度解释 DBS 疗效的差异。我们收集了在我们中心接受 DBS 治疗的 76 例 MS 患者的术前 T1 加权 MRI 图像。根据症状改善率,将所有 MS 患者分为两组:高改善组(HIG)和低改善组(LIG)。我们在每组中构建了组水平结构协方差网络,并比较了组间的基于图的拓扑性质和区域间连接。随后还进行了功能注释和相关性分析。结果表明,与 LIG 相比,HIG 具有更高的聚类系数、更长的特征路径长度、更低的小世界指数和更低的全局效率。组间的不同节点介数和度数主要存在于顶叶下小叶、感觉运动皮质和皮质下核,其中左侧中央前回和左侧丘脑的灰质体积与症状改善率呈正相关。此外,与 LIG 相比,HIG 具有更强的躯体运动网络内和躯体运动网络与默认模式网络之间的区域间连接。我们得出结论,高和低 DBS 反应者在大规模网络结构上存在显著差异。我们的研究揭示了 MS 患者中不同 DBS 反应的结构网络基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c75b/11284554/f230e947729a/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验