Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA.
Department of Biostatistics and Center for Methods in Implementation and Prevention Science, Yale School of Public Health, New Haven, CT, USA.
Clin Trials. 2024 Oct;21(5):623-635. doi: 10.1177/17407745241243308. Epub 2024 Apr 28.
Although the hazard ratio has no straightforward causal interpretation, clinical trialists commonly use it as a measure of treatment effect.
We review the definition and examples of causal estimands. We discuss the causal interpretation of the hazard ratio from a two-arm randomized clinical trial, and the implications of proportional hazards assumptions in the context of potential outcomes. We illustrate the application of these concepts in a synthetic model and in a model of the time-varying effects of COVID-19 vaccination.
We define causal estimands as having either an or interpretation. Difference-in-expectation estimands are both individual-level and population-level estimands, whereas without strong untestable assumptions the causal rate ratio and hazard ratio have only population-level interpretations. We caution users against making an incorrect individual-level interpretation, emphasizing that in general a hazard ratio does not on average change each individual's hazard by a factor. We discuss a potentially valid interpretation of the constant hazard ratio as a population-level causal effect under the proportional hazards assumption.
We conclude that the population-level hazard ratio remains a useful estimand, but one must interpret it with appropriate attention to the underlying causal model. This is especially important for interpreting hazard ratios over time.
尽管危害比没有直接的因果解释,但临床试验研究者通常将其用作治疗效果的衡量标准。
我们回顾了因果估计量的定义和示例。我们讨论了来自两臂随机临床试验的危害比的因果解释,以及潜在结果背景下比例风险假设的含义。我们通过一个综合模型和 COVID-19 疫苗时变效应的模型说明了这些概念的应用。
我们将因果估计量定义为具有 或 解释。差异预期估计量既是个体水平又是群体水平的估计量,而没有强有力的不可检验的假设,因果率比和危害比只有群体水平的解释。我们警告用户不要进行错误的个体水平解释,强调一般来说,危害比不会平均使每个人的危险增加一个因素。我们讨论了在比例风险假设下,恒定危害比作为群体水平因果效应的一种潜在有效解释。
我们的结论是,群体水平的危害比仍然是一个有用的估计量,但必须根据潜在的因果模型进行适当的解释。这对于随时间解释危害比尤其重要。