Suppr超能文献

用于更快医学图像分割的令牌稀疏化

Token Sparsification for Faster Medical Image Segmentation.

作者信息

Zhou Lei, Liu Huidong, Bae Joseph, He Junjun, Samaras Dimitris, Prasanna Prateek

机构信息

Department of Computer Science, Stony Brook University, NY, USA.

Amazon, WA, USA.

出版信息

Inf Process Med Imaging. 2023 Jun;13939:743-754. doi: 10.1007/978-3-031-34048-2_57. Epub 2023 Jun 8.

Abstract

Although token sparsification has been applied to Vision Transformers (ViT) to accelerate classification, it is still unknown how to perform segmentation from sparse tokens. To this end, we reformulate segmentation as a → → (SCD) pipeline. We first empirically show that naïvely applying existing approaches from classification token pruning and masked image modeling (MIM) leads to failure and inefficient training caused by inappropriate sampling algorithms and the low quality of the restored dense features. In this paper, we propose and to address these problems. In , predicts token importance scores with a lightweight sub-network and samples the topK tokens. The intractable topK gradients are approximated through a continuous perturbed score distribution. In , restores a full token sequence by assembling both sparse output tokens and pruned multi-layer intermediate ones. The last stage is compatible with existing segmentation decoders, e.g., UNETR. Experiments show SCD pipelines equipped with and are much faster than baselines without token pruning in both training (up to 120% higher throughput) and inference (up to 60.6% higher throughput) while maintaining segmentation quality. Code is available here: https://github.com/cvlab-stonybrook/TokenSparse-for-MedSeg.

摘要

尽管令牌稀疏化已应用于视觉变换器(ViT)以加速分类,但如何从稀疏令牌执行分割仍不清楚。为此,我们将分割重新表述为一个→→(SCD)管道。我们首先通过实验表明,简单地应用来自分类令牌剪枝和掩码图像建模(MIM)的现有方法会由于不合适的采样算法和恢复的密集特征质量低而导致失败和低效训练。在本文中,我们提出和来解决这些问题。在中,通过一个轻量级子网预测令牌重要性分数并对前K个令牌进行采样。通过连续扰动分数分布近似难处理的前K个梯度。在中,通过组装稀疏输出令牌和剪枝的多层中间令牌来恢复完整的令牌序列。最后一个阶段与现有的分割解码器兼容,例如UNETR。实验表明,配备和的SCD管道在训练(吞吐量提高高达120%)和推理(吞吐量提高高达60.6%)方面比没有令牌剪枝的基线快得多,同时保持分割质量。代码可在此处获得:https://github.com/cvlab-stonybrook/TokenSparse-for-MedSeg

相似文献

1
Token Sparsification for Faster Medical Image Segmentation.用于更快医学图像分割的令牌稀疏化
Inf Process Med Imaging. 2023 Jun;13939:743-754. doi: 10.1007/978-3-031-34048-2_57. Epub 2023 Jun 8.
3
Efficient Vision Transformer via Token Merger.通过令牌合并实现高效视觉Transformer
IEEE Trans Image Process. 2023;32:4156-4169. doi: 10.1109/TIP.2023.3293763. Epub 2023 Jul 21.
4
TCFormer: Visual Recognition via Token Clustering Transformer.TCFormer:通过令牌聚类变换器实现视觉识别
IEEE Trans Pattern Anal Mach Intell. 2024 Dec;46(12):9521-9535. doi: 10.1109/TPAMI.2024.3425768. Epub 2024 Nov 6.
5
Expediting Large-Scale Vision Transformer for Dense Prediction Without Fine-Tuning.无需微调加速用于密集预测的大规模视觉Transformer
IEEE Trans Pattern Anal Mach Intell. 2024 Jan;46(1):250-266. doi: 10.1109/TPAMI.2023.3327511. Epub 2023 Dec 5.
6
Token Selection is a Simple Booster for Vision Transformers.令牌选择是视觉Transformer的一种简单增强方法。
IEEE Trans Pattern Anal Mach Intell. 2023 Nov;45(11):12738-12746. doi: 10.1109/TPAMI.2022.3208922. Epub 2023 Oct 3.
7
Fast-iTPN: Integrally Pre-Trained Transformer Pyramid Network With Token Migration.快速iTPN:带令牌迁移的整体预训练变压器金字塔网络
IEEE Trans Pattern Anal Mach Intell. 2024 Dec;46(12):9766-9779. doi: 10.1109/TPAMI.2024.3429508. Epub 2024 Nov 6.
9
Self-supervised 3D anatomy segmentation using self-distilled masked image transformer (SMIT).使用自蒸馏掩码图像变换器(SMIT)的自监督3D解剖分割。
Med Image Comput Comput Assist Interv. 2022 Sep;13434:556-566. doi: 10.1007/978-3-031-16440-8_53. Epub 2022 Sep 16.

本文引用的文献

1
Deep High-Resolution Representation Learning for Visual Recognition.用于视觉识别的深度高分辨率表征学习
IEEE Trans Pattern Anal Mach Intell. 2021 Oct;43(10):3349-3364. doi: 10.1109/TPAMI.2020.2983686. Epub 2021 Sep 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验