Suppr超能文献

荧光标记纤维中偏振效应的表征与校正

Characterisation and correction of polarisation effects in fluorescently labelled fibres.

作者信息

Aggarwal Nandini, Marsh Richard, Marcotti Stefania, Shaw Tanya J, Stramer Brian, Cox Susan, Culley Siân

机构信息

Randall Centre for Cell & Molecular Biophysics, King's College London, London, UK.

Centre for Inflammation Biology & Cancer Immunology, School of Immunology & Microbial Sciences, King's College London, London, UK.

出版信息

J Microsc. 2025 May;298(2):185-203. doi: 10.1111/jmi.13308. Epub 2024 Apr 29.

Abstract

Many biological structures take the form of fibres and filaments, and quantitative analysis of fibre organisation is important for understanding their functions in both normal physiological conditions and disease. In order to visualise these structures, fibres can be fluorescently labelled and imaged, with specialised image analysis methods available for quantifying the degree and strength of fibre alignment. Here we show that fluorescently labelled fibres can display polarised emission, with the strength of this effect varying depending on structure and fluorophore identity. This can bias automated analysis of fibre alignment and mask the true underlying structural organisation. We present a method for quantifying and correcting these polarisation effects without requiring polarisation-resolved microscopy and demonstrate its efficacy when applied to images of fluorescently labelled collagen gels, allowing for more reliable characterisation of fibre microarchitecture.

摘要

许多生物结构呈纤维和细丝状,对纤维组织进行定量分析对于理解其在正常生理条件和疾病中的功能都很重要。为了可视化这些结构,可以对纤维进行荧光标记并成像,同时有专门的图像分析方法可用于量化纤维排列的程度和强度。在这里,我们表明荧光标记的纤维可以显示偏振发射,这种效应的强度因结构和荧光团特性而异。这可能会使纤维排列的自动分析产生偏差,并掩盖真正的潜在结构组织。我们提出了一种无需偏振分辨显微镜即可量化和校正这些偏振效应的方法,并证明了其应用于荧光标记的胶原凝胶图像时的有效性,从而能够更可靠地表征纤维微结构。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ec4/11987583/7721a59fd789/JMI-298-185-g004.jpg

相似文献

1
Characterisation and correction of polarisation effects in fluorescently labelled fibres.
J Microsc. 2025 May;298(2):185-203. doi: 10.1111/jmi.13308. Epub 2024 Apr 29.
5
The acquisition and analysis of polarized total internal reflection fluorescence microscopy (polTIRFM) data.
Cold Spring Harb Protoc. 2012 Jun 1;2012(6):722-5. doi: 10.1101/pdb.prot069419.
6
Microtubule dynamics reconstituted in vitro and imaged by single-molecule fluorescence microscopy.
Methods Cell Biol. 2010;95:221-45. doi: 10.1016/S0091-679X(10)95013-9.
8
Labeling Bacterial Flagella with Fluorescent Dyes.
Methods Mol Biol. 2018;1729:71-76. doi: 10.1007/978-1-4939-7577-8_7.
9
In-situ visualisation of hyphal structure and arrangement in mycoprotein pastes.
Biotechnol Lett. 2003 Feb;25(4):295-300. doi: 10.1023/a:1022393116596.

本文引用的文献

1
Autocrine IL-6 drives cell and extracellular matrix anisotropy in scar fibroblasts.
Matrix Biol. 2023 Nov;123:1-16. doi: 10.1016/j.matbio.2023.08.004. Epub 2023 Sep 1.
2
Collagen Fibril Orientation Instructs Fibroblast Differentiation Via Cell Contractility.
Adv Sci (Weinh). 2023 Aug;10(22):e2301353. doi: 10.1002/advs.202301353. Epub 2023 May 30.
3
A method for reproducible high-resolution imaging of 3D cancer cell spheroids.
J Microsc. 2023 Jul;291(1):30-42. doi: 10.1111/jmi.13169. Epub 2023 Jan 26.
4
A workflow for rapid unbiased quantification of fibrillar feature alignment in biological images.
Front Comput Sci. 2021 Oct;3. doi: 10.3389/fcomp.2021.745831. Epub 2021 Oct 14.
5
Development of Cell-Derived Matrices for Three-Dimensional Cancer Cell Models.
ACS Appl Mater Interfaces. 2021 Sep 22;13(37):44108-44123. doi: 10.1021/acsami.1c13630. Epub 2021 Sep 8.
6
Current Insights into Collagen Type I.
Polymers (Basel). 2021 Aug 9;13(16):2642. doi: 10.3390/polym13162642.
7
Molecular and Spectroscopic Characterization of Green and Red Cyanine Fluorophores from the Alexa Fluor and AF Series*.
Chemphyschem. 2021 Aug 4;22(15):1566-1583. doi: 10.1002/cphc.202000935. Epub 2021 Jun 29.
8
A FIJI macro for quantifying pattern in extracellular matrix.
Life Sci Alliance. 2021 Jan 27;4(3). doi: 10.26508/lsa.202000880. Print 2021 Mar.
9
Navigating the Collagen Jungle: The Biomedical Potential of Fiber Organization in Cancer.
Bioengineering (Basel). 2021 Jan 21;8(2):17. doi: 10.3390/bioengineering8020017.
10
Extracellular matrix anisotropy is determined by TFAP2C-dependent regulation of cell collisions.
Nat Mater. 2020 Feb;19(2):227-238. doi: 10.1038/s41563-019-0504-3. Epub 2019 Oct 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验