Suppr超能文献

一种用于快速无偏量化生物图像中纤维状特征对齐的工作流程。

A workflow for rapid unbiased quantification of fibrillar feature alignment in biological images.

作者信息

Marcotti Stefania, de Freitas Deandra Belo, Troughton Lee D, Kenny Fiona N, Shaw Tanya J, Stramer Brian M, Oakes Patrick W

机构信息

Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK.

Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, US.

出版信息

Front Comput Sci. 2021 Oct;3. doi: 10.3389/fcomp.2021.745831. Epub 2021 Oct 14.

Abstract

Measuring the organisation of the cellular cytoskeleton and the surrounding extracellular matrix (ECM) is currently of wide interest as changes in both local and global alignment can highlight alterations in cellular functions and material properties of the extracellular environment. Different approaches have been developed to quantify these structures, typically based on fibre segmentation or on matrix representation and transformation of the image, each with its own advantages and disadvantages. Here we present , a workflow to quantify the alignment of fibrillar features in microscopy images exploiting 2D Fast Fourier Transforms (FFT). Using pre-existing datasets of cell and ECM images, we demonstrate our approach and compare and contrast this workflow with two other well-known ImageJ algorithms to quantify image feature alignment. These comparisons reveal that has a number of advantages due to its grid-based FFT approach. 1) Flexibility in defining the window and neighbourhood sizes allows for performing a parameter search to determine an optimal length scale to carry out alignment metrics. This approach can thus easily accommodate different image resolutions and biological systems. 2) The length scale of decay in alignment can be extracted by comparing neighbourhood sizes, revealing the overall distance that features remain anisotropic. 3) The approach is ambivalent to the signal source, thus making it applicable for a wide range of imaging modalities and is dependent on fewer input parameters than segmentation methods. 4) Finally, compared to segmentation methods, this algorithm is computationally inexpensive, as high-resolution images can be evaluated in less than a second on a standard desktop computer. This makes it feasible to screen numerous experimental perturbations or examine large images over long length scales. Implementation is made available in both MATLAB and Python for wider accessibility, with example datasets for single images and batch processing. Additionally, we include an approach to automatically search parameters for optimum window and neighbourhood sizes, as well as to measure the decay in alignment over progressively increasing length scales.

摘要

测量细胞细胞骨架和周围细胞外基质(ECM)的组织目前备受关注,因为局部和全局排列的变化可以突出细胞功能和细胞外环境物质特性的改变。已经开发出不同的方法来量化这些结构,通常基于纤维分割或图像的矩阵表示与变换,每种方法都有其自身的优缺点。在这里,我们提出了一种利用二维快速傅里叶变换(FFT)来量化显微镜图像中纤维状特征排列的工作流程。使用现有的细胞和ECM图像数据集,我们展示了我们的方法,并将此工作流程与其他两种著名的ImageJ算法进行比较和对比,以量化图像特征排列。这些比较表明,由于其基于网格的FFT方法,[该方法名称未给出]具有许多优点。1)定义窗口和邻域大小的灵活性允许执行参数搜索,以确定进行排列度量的最佳长度尺度。因此,这种方法可以轻松适应不同的图像分辨率和生物系统。2)通过比较邻域大小可以提取排列衰减的长度尺度,揭示特征保持各向异性的总体距离。3)该方法对信号源不敏感,因此适用于广泛的成像模态,并且比分割方法依赖更少的输入参数。4)最后,与分割方法相比,该算法计算成本低,因为在标准台式计算机上不到一秒钟就能评估高分辨率图像。这使得筛选大量实验扰动或在长长度尺度上检查大图像成为可能。该实现可在MATLAB和Python中使用,以实现更广泛的可访问性,并提供单图像和批处理的示例数据集。此外,我们还包括一种自动搜索最佳窗口和邻域大小参数的方法,以及测量排列在逐渐增加的长度尺度上的衰减的方法。

相似文献

1
A workflow for rapid unbiased quantification of fibrillar feature alignment in biological images.
Front Comput Sci. 2021 Oct;3. doi: 10.3389/fcomp.2021.745831. Epub 2021 Oct 14.
2
Methods for Quantifying Fibrillar Collagen Alignment.
Methods Mol Biol. 2017;1627:429-451. doi: 10.1007/978-1-4939-7113-8_28.
6
A Fast Image Alignment Approach for 2D Classification of Cryo-EM Images Using Spectral Clustering.
Curr Issues Mol Biol. 2021 Oct 18;43(3):1652-1668. doi: 10.3390/cimb43030117.
7
Objective Morphological Quantification of Microscopic Images Using a Fast Fourier Transform (FFT) Analysis.
Curr Protoc Essent Lab Tech. 2013;95(Suppl 7):9.5.1-9.5.12. doi: 10.1002/9780470089941.et0905s07. Epub 2013 Oct 23.
8
Automatic microscopic image analysis by moving window local Fourier Transform and Machine Learning.
Micron. 2020 Mar;130:102800. doi: 10.1016/j.micron.2019.102800. Epub 2019 Dec 11.
9
High-Throughput Segmentation of Tiled Biological Structures using Random-Walk Distance Transforms.
Integr Comp Biol. 2019 Dec 1;59(6):1700-1712. doi: 10.1093/icb/icz117.
10
Fast Cryo-EM Image Alignment Algorithm Using Power Spectrum Features.
J Chem Inf Model. 2021 Sep 27;61(9):4795-4806. doi: 10.1021/acs.jcim.1c00745. Epub 2021 Sep 15.

引用本文的文献

1
Genetic and environmental determinants of streaming and aggregation in Myxococcus xanthus.
Sci Rep. 2025 Aug 21;15(1):30673. doi: 10.1038/s41598-025-15915-8.
3
Mechanical Forces Guide Axon Growth through the Nigrostriatal Pathway in an Organotypic Model.
Adv Sci (Weinh). 2025 Aug;12(31):e2500400. doi: 10.1002/advs.202500400. Epub 2025 May 11.
4
The formin FMNL2 plays a role in the response of melanoma cells to substrate stiffness.
BMC Mol Cell Biol. 2025 Apr 29;26(1):13. doi: 10.1186/s12860-025-00538-8.
7
TLNRD1 is a CCM complex component and regulates endothelial barrier integrity.
J Cell Biol. 2024 Sep 2;223(9). doi: 10.1083/jcb.202310030. Epub 2024 Jul 16.
8
Characterisation and correction of polarisation effects in fluorescently labelled fibres.
J Microsc. 2025 May;298(2):185-203. doi: 10.1111/jmi.13308. Epub 2024 Apr 29.
9
Apical expansion of calvarial osteoblasts and suture patency is dependent on fibronectin cues.
Development. 2024 Apr 1;151(7). doi: 10.1242/dev.202371. Epub 2024 Apr 11.
10
The actin cytoskeleton: Morphological changes in pre- and fully developed lung cancer.
Biophys Rev (Melville). 2022 Dec 30;3(4):041304. doi: 10.1063/5.0096188. eCollection 2022 Dec.

本文引用的文献

1
Coherency image analysis to quantify collagen architecture: implications in scar assessment.
RSC Adv. 2018 Mar 6;8(18):9661-9669. doi: 10.1039/c7ra12693j. eCollection 2018 Mar 5.
2
Preventing activation in fibroblasts yields wound regeneration without scarring.
Science. 2021 Apr 23;372(6540). doi: 10.1126/science.aba2374.
3
A FIJI macro for quantifying pattern in extracellular matrix.
Life Sci Alliance. 2021 Jan 27;4(3). doi: 10.26508/lsa.202000880. Print 2021 Mar.
4
Navigating the Collagen Jungle: The Biomedical Potential of Fiber Organization in Cancer.
Bioengineering (Basel). 2021 Jan 21;8(2):17. doi: 10.3390/bioengineering8020017.
5
CD4 T Cell Interstitial Migration Controlled by Fibronectin in the Inflamed Skin.
Front Immunol. 2020 Jul 24;11:1501. doi: 10.3389/fimmu.2020.01501. eCollection 2020.
6
Fibrillar Collagen Quantification With Curvelet Transform Based Computational Methods.
Front Bioeng Biotechnol. 2020 Apr 21;8:198. doi: 10.3389/fbioe.2020.00198. eCollection 2020.
7
Extracellular matrix anisotropy is determined by TFAP2C-dependent regulation of cell collisions.
Nat Mater. 2020 Feb;19(2):227-238. doi: 10.1038/s41563-019-0504-3. Epub 2019 Oct 28.
8
Cell shape and substrate stiffness drive actin-based cell polarity.
Phys Rev E. 2019 Jan;99(1-1):012412. doi: 10.1103/PhysRevE.99.012412.
9
Methods for Quantifying Fibrillar Collagen Alignment.
Methods Mol Biol. 2017;1627:429-451. doi: 10.1007/978-1-4939-7113-8_28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验