Mukhopadhyay D, Bandyopadhyay M, Tyagi H, Patel K
Institute for Plasma Research, Bhat, Gandhinagar 382428, Gujarat, India.
Homi Bhabha National Institute (HBNI), Anushaktinagar, Mumbai 400094, Maharashtra, India.
Rev Sci Instrum. 2024 Apr 1;95(4). doi: 10.1063/5.0186429.
In the pursuit of precise diagnostics for measuring negative ion density in a helicon plasma source (HPS), a new approach utilizing a radio frequency (RF) broadband transformer-based Langmuir probe is developed specifically for laser photo-detachment (LPD) analysis. This inductively coupled LPD technique is useful for high power RF systems in which capacitive RF noise is in the same scale as the pulsed photo-detachment signal. The signal acquired by this transformer-based probe is compared against the conventional Langmuir probe-based LPD technique, revealing a remarkable enhancement in signal fidelity through an improved signal-to-noise ratio (SNR) achieved by the RF broadband transformer methodology. In addition, the localized hydrogen negative ion density measurements obtained through this probe are harmoniously aligned with the line-averaged negative ion density derived from the cavity ringdown spectroscopy (CRDS) technique. These concurrence measurements highlight the RF broadband transformer-based approach's accuracy in capturing localized negative ion density during helicon mode operation in an HPS setup. Furthermore, the correlation of negative ion density values with RF input exhibits a consistent trend in tandem with background plasma density. Notably, both CRDS and LPD measurements ascertain negative ion densities ranging from ∼5 to 6×1016 m-3 under an RF power of 500-700 W and a pressure of 8 × 10-3 mbar, all under the influence of a 55 G axial magnetic field. These specific parameters represent the optimal operational configuration for effective negative ion production with the present experimental HPS setup. Due to its better SNR, the RF broadband transformer-based Langmuir probe emerges as a useful tool for LPD diagnostics, particularly in the presence of pervasive RF noise.
在寻求精确诊断螺旋波等离子体源(HPS)中负离子密度的过程中,开发了一种新方法,该方法利用基于射频(RF)宽带变压器的朗缪尔探针专门用于激光光解离(LPD)分析。这种电感耦合LPD技术适用于高功率射频系统,在该系统中电容性射频噪声与脉冲光解离信号处于相同量级。将基于这种变压器的探针采集的信号与传统的基于朗缪尔探针的LPD技术进行比较,结果表明,通过射频宽带变压器方法实现的信噪比(SNR)的提高,信号保真度有显著增强。此外,通过该探针获得的局部氢负离子密度测量结果与腔衰荡光谱(CRDS)技术得出的线平均负离子密度和谐一致。这些同步测量突出了基于射频宽带变压器的方法在HPS装置的螺旋波模式运行期间捕获局部负离子密度方面的准确性。此外,负离子密度值与射频输入的相关性与背景等离子体密度呈现出一致的趋势。值得注意的是,在55 G轴向磁场的影响下,CRDS和LPD测量都确定在500 - 700 W的射频功率和8×10 - 3 mbar的压力下,负离子密度范围为~5至6×1016 m - 3。这些特定参数代表了当前实验性HPS装置有效产生负离子的最佳运行配置。由于其具有更好的信噪比,基于射频宽带变压器的朗缪尔探针成为LPD诊断的有用工具,特别是在存在普遍射频噪声的情况下。