Department of Biomedicine, University of Bergen, Bergen, Norway.
Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland.
PLoS One. 2024 Apr 29;19(4):e0300453. doi: 10.1371/journal.pone.0300453. eCollection 2024.
The activity-regulated cytoskeleton-associated protein (Arc) is a complex regulator of synaptic plasticity in glutamatergic neurons. Understanding its molecular function is key to elucidate the neurobiology of memory and learning, stress regulation, and multiple neurological and psychiatric diseases. The recent development of anti-Arc nanobodies has promoted the characterization of the molecular structure and function of Arc. This study aimed to validate two anti-Arc nanobodies, E5 and H11, as selective modulators of the human Arc N-lobe (Arc-NL), a domain that mediates several molecular functions of Arc through its peptide ligand binding site. The structural characteristics of recombinant Arc-NL-nanobody complexes were solved at atomic resolution using X-ray crystallography. Both anti-Arc nanobodies bind specifically to the multi-peptide binding site of Arc-NL. Isothermal titration calorimetry showed that the Arc-NL-nanobody interactions occur at nanomolar affinity, and that the nanobodies can displace a TARPγ2-derived peptide from the binding site. Thus, both anti-Arc-NL nanobodies could be used as competitive inhibitors of endogenous Arc ligands. Differences in the CDR3 loops between the two nanobodies indicate that the spectrum of short linear motifs recognized by the Arc-NL should be expanded. We provide a robust biochemical background to support the use of anti-Arc nanobodies in attempts to target Arc-dependent synaptic plasticity. Function-blocking anti-Arc nanobodies could eventually help unravel the complex neurobiology of synaptic plasticity and allow to develop diagnostic and treatment tools.
活性调节细胞骨架相关蛋白(Arc)是谷氨酸能神经元突触可塑性的复杂调节因子。了解其分子功能对于阐明记忆和学习、应激调节以及多种神经和精神疾病的神经生物学至关重要。最近开发的抗 Arc 纳米抗体促进了对 Arc 的分子结构和功能的表征。本研究旨在验证两种抗 Arc 纳米抗体,E5 和 H11,作为人 Arc N 结构域(Arc-NL)的选择性调节剂,该结构域通过其肽配体结合位点介导 Arc 的几种分子功能。使用 X 射线晶体学在原子分辨率下解决了重组 Arc-NL-纳米抗体复合物的结构特征。两种抗 Arc 纳米抗体都特异性地结合到 Arc-NL 的多肽结合位点。等温滴定量热法显示 Arc-NL-纳米抗体相互作用发生在纳摩尔亲和力,并且纳米抗体可以从结合位点置换 TARPγ2 衍生肽。因此,两种抗 Arc-NL 纳米抗体都可以用作内源性 Arc 配体的竞争性抑制剂。两种纳米抗体的 CDR3 环之间的差异表明,Arc-NL 识别的短线性基序的范围应该扩大。我们提供了强大的生化背景,以支持在尝试靶向依赖 Arc 的突触可塑性时使用抗 Arc 纳米抗体。功能阻断性抗 Arc 纳米抗体最终可能有助于揭示复杂的突触可塑性神经生物学,并允许开发诊断和治疗工具。