Li Min, Jiang Lan, Li Xiaowei, Li Taoyong, Yi Peng, Li Xibiao, Zhang Leyi, Li Luqi, Wang Zhi, Zhang Xiangyu, Wang Andong, Li Jiafang
Laser Micro/Nano Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China.
Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing 314019, China.
ACS Appl Mater Interfaces. 2024 May 8;16(18):23904-23913. doi: 10.1021/acsami.4c02749. Epub 2024 Apr 29.
Capillary force driven self-assembly micropillars (CFSA-MP) holds immense promise for the manipulation and capture of cells/tiny objects, which has great demands of wide size range and high robustness. Here, we propose a novel method to fabricate size-adjustable and highly robust CFSA-MP that can achieve wide size range and high stability to capture microspheres. First, we fabricate a microholes template with an adjustable aspect ratio using the spatial-temporal shaping femtosecond laser double-pulse Bessel beam-assisted chemical etching technique, and then the micropillars with adjustable aspect ratio are demolded by polydimethylsiloxane (PDMS). We fully demonstrated the advantages of the Bessel optical field by using the spatial-temporal shaping femtosecond laser double-pulse Bessel beams to broaden the height range of the micropillars, which in turn expands the size range of the captured microspheres, and finally achieving a wide range of capturing microspheres with a diameter of 5-410 μm. Based on the inverted mold technology, the PDMS micropillars have ultrahigh mechanical robustness, which greatly improves the durability. CFSA-MP has the ability to capture tiny objects with wide range and high stability, which indicates great potential applications in the fields of chemistry, biomedicine, and microfluidics.
毛细力驱动自组装微柱(CFSA-MP)在细胞/微小物体的操控与捕获方面极具潜力,这对宽尺寸范围和高稳健性有很高要求。在此,我们提出一种新颖的方法来制造尺寸可调且高度稳健的CFSA-MP,其能够实现宽尺寸范围并具备高稳定性以捕获微球。首先,我们利用时空整形飞秒激光双脉冲贝塞尔光束辅助化学蚀刻技术制造出具有可调纵横比的微孔模板,然后通过聚二甲基硅氧烷(PDMS)脱模得到具有可调纵横比的微柱。我们通过使用时空整形飞秒激光双脉冲贝塞尔光束充分展示了贝塞尔光场的优势,以拓宽微柱的高度范围,进而扩大捕获微球的尺寸范围,最终实现对直径为5 - 410μm的微球进行广泛捕获。基于倒模技术,PDMS微柱具有超高的机械稳健性,极大地提高了耐用性。CFSA-MP具备在宽范围和高稳定性下捕获微小物体的能力,这表明其在化学、生物医学和微流控等领域具有巨大的潜在应用价值