Lu Yibo, Jiang Lan, Wang Mengmeng, Li Xin, Wang Sumei, Zhang Xueqiang, Chen Bo, Li Xiaorui, Lu Chang
Laser Micro/Nano Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China.
Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing 314019, P. R. China.
ACS Appl Mater Interfaces. 2025 Jun 18;17(24):36121-36135. doi: 10.1021/acsami.5c02734. Epub 2025 Jun 6.
Fabrication of plasmonic structures on a gold film is a well-established approach to improve the performance of surface plasmon resonance (SPR) sensors. However, traditional fabrication techniques, such as photolithography, electron beam lithography (EBL), and focused ion beam (FIB) milling, often involve complex procedures and costly equipment. In this study, we present a mask-free, convenient method to fabricate robust plasmonic structures on the surface of z-cut α-quartz by combining femtosecond laser-induced modification with chemical etching for high-sensitivity Kretschmann configuration SPR sensing. We find that the etching process of laser-modified α-quartz in ammonium bifluoride (NHHF) solution proceeds in two distinct stages: isotropic etching and anisotropic etching. By comparing the etching morphology of the craters ablated by femtosecond laser with wavelengths of 400 and 800 nm, we observe that due to the lower threshold fluence and steeper crater profile, the 400 nm laser can induce more pronounced anisotropic etching, leading to sharper inverted pyramid structures. A 5-nm-thick Cr film and a 50-nm-thick Au film are then deposited on the patterned quartz surface, which is used to detect the refractive indices (RIs) of glycerol solutions as an SPR sensor. The inverted pyramid structures can enhance the localized electric fields, causing a red shift of the resonance peak and thereby improving the sensitivity of the SPR sensor. The sensor demonstrates a sensitivity of 4662.21 nm/RIU, achieving a 21.51% improvement compared with a traditional SPR sensor with a plain Au film under the same light incident angle. The refractive index (RI) resolution reaches 2.7 × 10 RIU, and the figure of merit (FOM) is 85.36 RIU. Femtosecond laser-assisted chemical etching offers an efficient and convenient method for fabricating plasmonic structures on α-quartz. The high-sensitivity SPR sensors developed through this approach demonstrate promising potential for applications in fields such as medical diagnostics, disease detection, and environmental monitoring.
在金膜上制备等离子体结构是一种成熟的提高表面等离子体共振(SPR)传感器性能的方法。然而,传统的制备技术,如光刻、电子束光刻(EBL)和聚焦离子束(FIB)铣削,通常涉及复杂的程序和昂贵的设备。在本研究中,我们提出了一种无掩膜、便捷的方法,通过将飞秒激光诱导改性与化学蚀刻相结合,在z切割α-石英表面制备坚固的等离子体结构,用于高灵敏度Kretschmann配置SPR传感。我们发现,激光改性的α-石英在氟化氢铵(NHHF)溶液中的蚀刻过程分两个不同阶段进行:各向同性蚀刻和各向异性蚀刻。通过比较飞秒激光在400和800nm波长下烧蚀的坑的蚀刻形态,我们观察到,由于较低的阈值能量密度和更陡峭的坑轮廓,400nm激光能诱导更明显的各向异性蚀刻,从而产生更尖锐的倒金字塔结构。然后在图案化的石英表面沉积一层5nm厚的Cr膜和一层50nm厚的Au膜,将其用作SPR传感器来检测甘油溶液的折射率(RI)。倒金字塔结构可以增强局部电场,导致共振峰红移,从而提高SPR传感器的灵敏度。该传感器的灵敏度为4662.21nm/RIU,与在相同入射角下具有普通Au膜的传统SPR传感器相比,提高了21.51%。折射率(RI)分辨率达到2.7×10 RIU,品质因数(FOM)为85.36 RIU。飞秒激光辅助化学蚀刻为在α-石英上制备等离子体结构提供了一种高效便捷的方法。通过这种方法开发的高灵敏度SPR传感器在医学诊断、疾病检测和环境监测等领域具有广阔的应用前景。