Department of Microbiology and Immunology, Cornell University, Ithaca, NY, USA.
George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
Nat Nanotechnol. 2024 Aug;19(8):1190-1202. doi: 10.1038/s41565-024-01649-7. Epub 2024 Apr 29.
Cellular programming of naïve T cells can improve the efficacy of adoptive T-cell therapy. However, the current ex vivo engineering of T cells requires the pre-activation of T cells, which causes them to lose their naïve state. In this study, cationic-polymer-functionalized nanowires were used to pre-program the fate of primary naïve CD8 T cells to achieve a therapeutic response in vivo. This was done by delivering single or multiple microRNAs to primary naïve mouse and human CD8 T cells without pre-activation. The use of nanowires further allowed for the delivery of large, whole lentiviral particles with potential for long-term integration. The combination of deletion and overexpression of miR-29 and miR-130 impacted the ex vivo T-cell differentiation fate from the naïve state. The programming of CD8 T cells using nanowire-delivered co-delivery of microRNAs resulted in the modulation of T-cell fitness by altering the T-cell proliferation, phenotypic and transcriptional regulation, and secretion of effector molecules. Moreover, the in vivo adoptive transfer of murine CD8 T cells programmed through the nanowire-mediated dual delivery of microRNAs provided enhanced immune protection against different types of intracellular pathogen (influenza and Listeria monocytogenes). In vivo analyses demonstrated that the simultaneous alteration of miR-29 and miR-130 levels in naïve CD8 T cells reduces the persistence of canonical memory T cells whereas increases the population of short-lived effector T cells. Nanowires could potentially be used to modulate CD8 T-cell differentiation and achieve a therapeutic response in vivo without the need for pre-activation.
未成熟 T 细胞的细胞编程可以提高过继性 T 细胞治疗的疗效。然而,目前 T 细胞的体外工程需要预先激活 T 细胞,这会导致它们失去未成熟状态。在这项研究中,使用阳离子聚合物功能化的纳米线来预先编程原代幼稚 CD8 T 细胞的命运,以实现体内的治疗反应。这是通过在不预先激活的情况下将单个或多个 microRNA 递送至原代幼稚的小鼠和人 CD8 T 细胞来实现的。纳米线的使用进一步允许递送电镜大小的完整慢病毒颗粒,具有长期整合的潜力。miR-29 和 miR-130 的缺失和过表达的组合影响了从幼稚状态到体外 T 细胞分化命运。通过纳米线递送的 microRNA 共递送对 CD8 T 细胞进行编程,通过改变 T 细胞的增殖、表型和转录调控以及效应分子的分泌来调节 T 细胞的适应性。此外,通过纳米线介导的 microRNA 双重递送编程的小鼠 CD8 T 细胞的体内过继转移提供了针对不同类型细胞内病原体(流感和李斯特菌)的增强免疫保护。体内分析表明,在幼稚 CD8 T 细胞中同时改变 miR-29 和 miR-130 的水平会减少经典记忆 T 细胞的持久性,而增加短命效应 T 细胞的数量。纳米线有可能被用于调节 CD8 T 细胞的分化,并在无需预先激活的情况下实现体内的治疗反应。
Nat Nanotechnol. 2024-8
Cochrane Database Syst Rev. 2022-10-4
Arch Ital Urol Androl. 2025-6-30
2025-1
Cancer Immunol Immunother. 2025-6-30
Nat Methods. 2025-4-22
Asian J Pharm Sci. 2025-2
Adv Healthc Mater. 2025-2
Nat Nanotechnol. 2024-8
Adv Mater. 2023-11
Nat Rev Clin Oncol. 2023-6
Nat Rev Clin Oncol. 2022-12
Adv Nanobiomed Res. 2021-3-30
Nano Lett. 2021-5-26
Br J Cancer. 2021-5