Suppr超能文献

剪切驱动破裂中血浆凝块的力学和微观结构。

Mechanics and microstructure of blood plasma clots in shear driven rupture.

机构信息

Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, USA.

Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA, USA.

出版信息

Soft Matter. 2024 May 29;20(21):4184-4196. doi: 10.1039/d4sm00042k.

Abstract

Intravascular blood clots are subject to hydrodynamic shear and other forces that cause clot deformation and rupture (embolization). A portion of the ruptured clot can block blood flow in downstream vessels. The mechanical stability of blood clots is determined primarily by the 3D polymeric fibrin network that forms a gel. Previous studies have primarily focused on the rupture of blood plasma clots under tensile loading (Mode I), our current study investigates the rupture of fibrin induced by shear loading (Mode II), dominating under physiological conditions induced by blood flow. Using experimental and theoretical approaches, we show that fracture toughness, the critical energy release rate, is relatively independent of the type of loading and is therefore a fundamental property of the gel. Ultrastructural studies and finite element simulations demonstrate that cracks propagate perpendicular to the direction of maximum stretch at the crack tip. These observations indicate that locally, the mechanism of rupture is predominantly tensile. Knowledge gained from this study will aid in the development of methods for prediction/prevention of thrombotic embolization.

摘要

血管内的血栓会受到流体动力剪切力和其他力的作用,导致血栓变形和破裂(栓塞)。一部分破裂的血栓可能会阻塞下游血管中的血流。血栓的机械稳定性主要取决于形成凝胶的三维聚合纤维蛋白网络。以前的研究主要集中在拉伸载荷下(模式 I)对血浆血栓的破裂,而我们当前的研究则调查了剪切载荷下(模式 II)诱导的纤维蛋白破裂,这种破裂在血流引起的生理条件下占主导地位。通过实验和理论方法,我们表明,断裂韧性,即临界能量释放率,相对独立于载荷类型,因此是凝胶的基本性质。超微结构研究和有限元模拟表明,裂纹沿裂纹尖端最大拉伸方向垂直扩展。这些观察结果表明,在局部,破裂的机制主要是拉伸。从这项研究中获得的知识将有助于开发预测/预防血栓栓塞的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48e3/11135145/dae8fc64000c/d4sm00042k-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验