Font Pau, Valdés Hugo, Ribas Xavi
Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus de Montilivi, Girona, E-17003, Catalonia, Spain.
Current address: Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá, 28805, Alcalá de Henares, Madrid, Spain.
Angew Chem Int Ed Engl. 2024 Jul 1;63(27):e202405824. doi: 10.1002/anie.202405824. Epub 2024 May 14.
In this minireview we survey the challenges and strategies in gold redox catalysis. Gold's reluctance to oxidative addition reactions due to its high redox potential limits its applicability. Initial attempts to overcome this problem focused on the use of sacrificial external oxidants in stoichiometric amounts to bring Au(I) compounds to Au(III) reactive species. Recently, innovative approaches focused on employing hemilabile ligands, which are capable of coordinating to Au(I) and stabilizing square-planar Au(III) intermediates, thus facilitating oxidative addition steps and enabling oxidant-free catalysis. Notable examples include the use of the (P^N) bidendate MeDalphos ligand to achieve various cross-coupling reactions via oxidative addition Au(I)/Au(III). Importantly, hemilabile ligand-enabled catalysis allows merging oxidative addition with π-activation, such as oxy- and aminoarylation of alkenols and alkenamines using organohalides, expanding gold's versatility in C-C and C-heteroatom bond formations and unprecedented cyclizations. Moreover, recent advancements in enantioselective catalysis using chiral hemilabile (P^N) ligands are also surveyed. Strikingly, versatile bidentate (C^N) hemilabile ligands as competitors of MeDalphos have appeared recently, by designing scaffolds where phosphine groups are substituted by N-heterocyclic or mesoionic carbenes. Overall, these approaches highlight the evolving landscape of gold redox catalysis and its tremendous potential in a broad scope of transformations.
在本综述中,我们探讨了金氧化还原催化中的挑战与策略。由于金的高氧化还原电位,其难以发生氧化加成反应,这限制了它的应用。最初克服这一问题的尝试集中在使用化学计量的牺牲性外部氧化剂,将Au(I)化合物转化为Au(III)活性物种。最近,创新方法聚焦于使用半不稳定配体,这些配体能够与Au(I)配位并稳定平面正方形Au(III)中间体,从而促进氧化加成步骤并实现无氧化剂催化。显著的例子包括使用双齿(P^N)配体MeDalphos通过Au(I)/Au(III)氧化加成实现各种交叉偶联反应。重要的是,半不稳定配体介导的催化允许将氧化加成与π-活化相结合,例如使用有机卤化物对烯醇和烯胺进行氧芳基化和氨芳基化,扩展了金在碳-碳和碳-杂原子键形成以及前所未有的环化反应中的多功能性。此外,还综述了使用手性半不稳定(P^N)配体在对映选择性催化方面的最新进展。引人注目的是,最近出现了通用的双齿(C^N)半不稳定配体作为MeDalphos的竞争者,通过设计将膦基团被N-杂环或中离子卡宾取代的骨架。总体而言,这些方法突出了金氧化还原催化不断发展的前景及其在广泛转化反应中的巨大潜力。