Matsoso Joyce B, Antonatos Nikolas, Dekanovský Lukáš, Lontio Fomekong Roussin, Elliot Joshua D, Gianolio Diego, Mazánek Vlastimil, Journet Catherine, Sofer Zdeněk
Department of Inorganic Chemistry, University of Chemistry and Technology in Prague, Technická 5, 166 28 Prague 6, Czech Republic.
Laboratoire des Multimatériaux et Interfaces, UMR CNRS 5615, Univ-Lyon, Université Claude Bernard Lyon 1, F-69622 Villeurbanne, Cedex, France.
ACS Appl Mater Interfaces. 2024 May 15;16(19):24514-24524. doi: 10.1021/acsami.4c00719. Epub 2024 Apr 30.
Given the challenging task of constructing an efficient nitrogen reduction reaction (NRR) electrocatalyst with enhanced ambient condition performance, properties such as high specific surface area, fast electron transfer, and design of the catalyst surface constitute a group of key factors to be taken into consideration to guarantee outstanding catalytic performance and durability. Thereof, this work investigates the contribution of the 2D/2D heterojunction interface between MoS and reduced graphene oxide (rGO) on the electrocatalytic synthesis of NH in an alkaline media. The results revealed remarkable NRR performance on the MoS@rGO 2/2D hybrid electrocatalyst, characterized by a high NRR sensitivity (faradaic efficiency) of 34.7% with an NH yield rate of 3.98 ± 0.19 mg h cm at an overpotential of -0.3 V vs RHE in 0.1 M KOH solution. The hybrid electrocatalysts also exhibited selectivity for NH synthesis against the production of the hydrazine (NH) byproduct, hindrance of the competitive hydrogen evolution reaction (HER), and good durability over an operation period of 8 h. In hindsight, the study presented a low-cost and highly efficient catalyst design for achieving enhanced ammonia synthesis in alkaline media via the formation of defect-rich ultrathin MoS@rGO nanostructures, consisting predominantly of an HER-hindering hexagonal 2H-MoS phase.
鉴于构建具有增强的环境条件性能的高效氮还原反应(NRR)电催化剂这一具有挑战性的任务,诸如高比表面积、快速电子转移以及催化剂表面设计等性质是保证出色催化性能和耐久性时需要考虑的一组关键因素。因此,本工作研究了MoS与还原氧化石墨烯(rGO)之间的二维/二维异质结界面在碱性介质中电催化合成NH方面的贡献。结果表明,MoS@rGO二维/二维混合电催化剂具有显著的NRR性能,在0.1 M KOH溶液中,相对于可逆氢电极(RHE)在-0.3 V的过电位下,其NRR灵敏度(法拉第效率)高达34.7%,NH产率为3.98±0.19 mg h cm。该混合电催化剂还表现出对NH合成的选择性,可抑制肼(NH)副产物的生成,阻碍竞争性析氢反应(HER)发生,并且在8小时的运行期内具有良好的耐久性。事后看来,该研究提出了一种低成本且高效的催化剂设计,通过形成富含缺陷的超薄MoS@rGO纳米结构(主要由阻碍HER的六方2H-MoS相组成)来实现碱性介质中氨合成的增强。