Song Hong, Sgouros George
Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Stanford University, Stanford, CA 94305, USA.
Division of Radiological Physics, Department of Radiology and Radiological Sciences, The Johns Hopkins University, Baltimore, MD 21205, USA.
PET Clin. 2024 Jul;19(3):307-323. doi: 10.1016/j.cpet.2024.03.006. Epub 2024 Apr 29.
Targeted radionuclide therapy (TRT) has significantly evolved from its beginnings with iodine-131 to employing carrier molecules with beta emitting isotopes like lutetium-177. With the success of Lu-177-DOTATATE for neuroendocrine tumors and Lu-177-PSMA-617 for prostate cancer, several other beta emitting radioisotopes, such as Cu-67 and Tb-161, are being explored for TRT. The field has also expanded into targeted alpha therapy (TAT) with agents like radium-223 for bone metastases in prostate cancer, and several other alpha emitter radioisotopes with carrier molecules, such as Ac-225, and Pb-212 under clinical trials. Despite these advancements, the scope of TRT in treating diverse solid tumors and integration with other therapies like immunotherapy remains under investigation. The success of antibody-drug conjugates further complements treatments with TRT, though challenges in treatment optimization continue.
靶向放射性核素治疗(TRT)已从最初使用碘-131有了显著发展,到如今开始使用带有发射β射线同位素(如镥-177)的载体分子。随着镥-177-奥曲肽用于神经内分泌肿瘤以及镥-177-PSMA-617用于前列腺癌取得成功,其他几种发射β射线的放射性同位素,如铜-67和铽-161,也正在被探索用于靶向放射性核素治疗。该领域还扩展到了靶向α治疗(TAT),例如使用镭-223治疗前列腺癌的骨转移,以及其他几种带有载体分子的发射α射线的放射性同位素,如锕-225和铅-212,目前正处于临床试验阶段。尽管有这些进展,但靶向放射性核素治疗在治疗多种实体瘤方面的范围以及与免疫疗法等其他疗法的联合应用仍在研究中。抗体药物偶联物的成功进一步补充了靶向放射性核素治疗,但治疗优化方面的挑战依然存在。