a Interdisciplinary Graduate Program in Human Toxicology, The University of Iowa, Iowa City, Iowa.
b Department of Medical Physics, University of Wisconsin, Madison, Wisconsin.
Radiat Res. 2018 Sep;190(3):236-247. doi: 10.1667/RR15081.1. Epub 2018 Jun 26.
The use of targeted radionuclide therapy for cancer is on the rise. While beta-particle-emitting radionuclides have been extensively explored for targeted radionuclide therapy, alpha-particle-emitting radionuclides are emerging as effective alternatives. In this context, fundamental understanding of the interactions and dosimetry of these emitted particles with cells in the tumor microenvironment is critical to ascertaining the potential of alpha-particle-emitting radionuclides. One important parameter that can be used to assess these metrics is the S-value. In this study, we characterized several alpha-particle-emitting radionuclides (and their associated radionuclide progeny) regarding S-values in the cellular and tumor-metastasis environments. The Particle and Heavy Ion Transport code System (PHITS) was used to obtain S-values via Monte Carlo simulation for cell and tumor metastasis resulting from interactions with the alpha-particle-emitting radionuclides, lead-212 (Pb), actinium-225 (Ac) and bismuth-213 (Bi); these values were compared to the beta-particle-emitting radionuclides yttrium-90 (Y) and lutetium-177 (Lu) and an Auger-electron-emitting radionuclide indium-111 (In). The effect of cellular internalization on S-value was explored at increasing degree of internalization for each radionuclide. This aspect of S-value determination was further explored in a cell line-specific fashion for six different cancer cell lines based on the cell dimensions obtained by confocal microscopy. S-values from PHITS were in good agreement with MIRDcell S-values (cellular S-values) and the values found by Hindié et al. (tumor S-values). In the cellular model, Pb and Bi decay series produced S-values that were 50- to 120-fold higher than Lu, while Ac decay series analysis suggested S-values that were 240- to 520-fold higher than Lu. S-values arising with 100% cellular internalization were two- to sixfold higher for the nucleus when compared to 0% internalization. The tumor dosimetry model defines the relative merit of radionuclides and suggests alpha particles may be effective for large tumors as well as small tumor metastases. These results from PHITS modeling substantiate emerging evidence that alpha-particle-emitting radionuclides may be an effective alternative to beta-particle-emitting radionuclides for targeted radionuclide therapy due to preferred dose-deposition profiles in the cellular and tumor metastasis context. These results further suggest that internalization of alpha-particle-emitting radionuclides via radiolabeled ligands may increase the relative biological effectiveness of radiotherapeutics.
用于癌症的靶向放射性核素疗法正在兴起。虽然已经广泛探索了β粒子发射放射性核素用于靶向放射性核素疗法,但α粒子发射放射性核素作为有效替代品正在出现。在这种情况下,深入了解这些发射粒子与肿瘤微环境中的细胞相互作用和剂量学至关重要,这对于确定α粒子发射放射性核素的潜力至关重要。可以用来评估这些指标的一个重要参数是 S 值。在这项研究中,我们对几种α粒子发射放射性核素(及其相关的放射性核素后代)在细胞和肿瘤转移环境中的 S 值进行了表征。通过蒙特卡罗模拟使用粒子和重离子输运代码系统 (PHITS) 获得了由于与α粒子发射放射性核素铅-212 (Pb)、锕-225 (Ac) 和铋-213 (Bi) 相互作用而导致的细胞和肿瘤转移的 S 值;将这些值与β粒子发射放射性核素钇-90 (Y) 和镥-177 (Lu) 以及俄歇电子发射放射性核素铟-111 (In) 进行了比较。研究了随着每个放射性核素内化程度的增加,细胞内化对 S 值的影响。根据共聚焦显微镜获得的细胞尺寸,以特定于细胞系的方式进一步探索了 S 值确定的这一方面,对六种不同的癌细胞系进行了研究。PHITS 的 S 值与 MIRDcell S 值(细胞 S 值)和 Hindié 等人的结果吻合良好。在细胞模型中,Pb 和 Bi 衰变系列产生的 S 值比 Lu 高 50 到 120 倍,而 Ac 衰变系列分析表明,S 值比 Lu 高 240 到 520 倍。与 0%内化相比,当 100%细胞内化时,核内的 S 值高 2 到 6 倍。肿瘤剂量学模型定义了放射性核素的相对优点,并表明α粒子可能对大肿瘤以及小肿瘤转移有效。PHITS 建模的这些结果证实了新兴证据,即由于在细胞和肿瘤转移背景下更偏好的剂量沉积分布,α粒子发射放射性核素可能成为β粒子发射放射性核素的有效替代品,用于靶向放射性核素疗法。这些结果进一步表明,通过放射性配体内化α粒子发射放射性核素可能会增加放射治疗的相对生物学效应。