Abolhosen Ahmed Miguel Román, Lee Shinyoung, Fukuda Kenjiro, Someya Takao, González Leobardo Hernández, Shintake Jun
Department of Mechanical and Intelligent Systems Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo, 182-8585, Japan.
Escuela Superior de Ingeniería Mecánica y Eléctrica, Unidad Culhuacán, Instituto Politécnico Nacional, Col. San Francisco Culhuacán, Av. Santa Ana No. 1000, 04440, Mexico City, Mexico.
Sci Rep. 2024 Apr 30;14(1):9953. doi: 10.1038/s41598-024-60899-6.
Improving the energy efficiency of robots remains a crucial challenge in soft robotics, with energy harvesting emerging as a promising approach to address it. This study presents a functional soft robotic composite called OPV-DEA, which integrates flexible organic photovoltaic (OPV) and dielectric elastomer actuator (DEA). The composite can simultaneously generate electrostatic bending actuation and harvest energy from external lights. Owing to its simplicity and inherent flexibility, the OPV-DEA is poised to function as a fundamental building block for soft robots. This study aimed to validate this concept by initially establishing the fabrication process of OPV-DEA. Subsequently, experimental samples are fabricated and characterized. The results show that the samples exhibit a voltage-controllable bending actuation of up to 15.6° and harvested power output of 1.35 mW under an incident power irradiance of 11.7 mW/cm. These performances remain consistent even after 1000 actuation cycles. Finally, to demonstrate the feasibility of soft robotic applications, an untethered swimming robot equipped with two OPV-DEAs is fabricated and tested. The robot demonstrates swimming at a speed of 21.7 mm/s. The power consumption of the robot is dominated by a high-voltage DC-DC converter, with a value approximately 1.5 W. As a result, the on-board OPVs cannot supply the necessary energy during locomotion simultaneously. Instead, they contribute to the overall system by charging a battery used for the controller on board. Nevertheless, these findings suggest that the OPV-DEA could pave the way for the development of an unprecedented range of functional soft robots.
提高机器人的能源效率仍然是软机器人领域的一项关键挑战,能量收集作为一种有前景的解决方法正在兴起。本研究展示了一种名为OPV-DEA的功能性软机器人复合材料,它集成了柔性有机光伏(OPV)和介电弹性体致动器(DEA)。该复合材料能够同时产生静电弯曲致动并从外部光线中收集能量。由于其简单性和固有的柔韧性,OPV-DEA有望成为软机器人的基本构建模块。本研究旨在通过初步建立OPV-DEA的制造工艺来验证这一概念。随后,制造并表征了实验样品。结果表明,在11.7 mW/cm的入射功率辐照下,样品表现出高达15.6°的电压可控弯曲致动和1.35 mW的收获功率输出。即使在1000次致动循环后,这些性能仍保持一致。最后,为了证明软机器人应用的可行性,制造并测试了一个配备两个OPV-DEA的无系绳游泳机器人。该机器人以21.7 mm/s的速度游动。机器人的功耗主要由一个高压DC-DC转换器决定,其值约为1.5 W。因此,板载OPV在运动过程中无法同时提供所需能量。相反,它们通过为板载控制器使用的电池充电来为整个系统做出贡献。尽管如此,这些发现表明OPV-DEA可以为前所未有的一系列功能性软机器人的发展铺平道路。