文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Expansion of human umbilical cord derived mesenchymal stem cells in regenerative medicine.

作者信息

Rajput Shafiqa Naeem, Naeem Bushra Kiran, Ali Anwar, Salim Asmat, Khan Irfan

机构信息

Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Sindh, Pakistan.

Surgical Unit 4, Dr. Ruth KM Pfau Civil Hospital, Karachi 74400, Pakistan.

出版信息

World J Stem Cells. 2024 Apr 26;16(4):410-433. doi: 10.4252/wjsc.v16.i4.410.


DOI:10.4252/wjsc.v16.i4.410
PMID:38690517
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11056638/
Abstract

BACKGROUND: Stem cells are undifferentiated cells that possess the potential for self-renewal with the capacity to differentiate into multiple lineages. In humans, their limited numbers pose a challenge in fulfilling the necessary demands for the regeneration and repair of damaged tissues or organs. Studies suggested that mesenchymal stem cells (MSCs), necessary for repair and regeneration via transplantation, require doses ranging from 10 to 400 million cells. Furthermore, the limited expansion of MSCs restricts their therapeutic application. AIM: To optimize a novel protocol to achieve qualitative and quantitative expansion of MSCs to reach the targeted number of cells for cellular transplantation and minimize the limitations in stem cell therapy protocols. METHODS: Human umbilical cord (hUC) tissue derived MSCs were obtained and re-cultured. These cultured cells were subjected to the following evaluation procedures: Immunophenotyping, immunocytochemical staining, trilineage differentiation, population doubling time and number, gene expression markers for proliferation, cell cycle progression, senescence-associated β-galactosidase assay, human telomerase reverse transcriptase (hTERT) expression, mycoplasma, cytomegalovirus and endotoxin detection. RESULTS: Analysis of pluripotent gene markers , , and in recultured hUC-MSC revealed no significant differences. The immunophenotypic markers CD90, CD73, CD105, CD44, vimentin, CD29, Stro-1, and Lin28 were positively expressed by these recultured expanded MSCs, and were found negative for CD34, CD11b, CD19, CD45, and HLA-DR. The recultured hUC-MSC population continued to expand through passage 15. Proliferative gene expression of , , and showed no significant variation between recultured hUC-MSC groups. Nevertheless, a significant increase ( < 0.001) in the mitotic phase of the cell cycle was observed in recultured hUC-MSCs. Cellular senescence markers (hTERT expression and β-galactosidase activity) did not show any negative effect on recultured hUC-MSCs. Additionally, quality control assessments consistently confirmed the absence of mycoplasma, cytomegalovirus, and endotoxin contamination. CONCLUSION: This study proposes the development of a novel protocol for efficiently expanding stem cell population. This would address the growing demand for larger stem cell doses needed for cellular transplantation and will significantly improve the feasibility of stem cell based therapies.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1443/11056638/03b2a5f83e97/WJSC-16-410-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1443/11056638/9cfebcddfd96/WJSC-16-410-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1443/11056638/04ea158326f0/WJSC-16-410-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1443/11056638/4fbc8917b58c/WJSC-16-410-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1443/11056638/ab3b549286a9/WJSC-16-410-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1443/11056638/45960ca8b6d9/WJSC-16-410-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1443/11056638/53b9d819577e/WJSC-16-410-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1443/11056638/80cf13774b04/WJSC-16-410-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1443/11056638/508406b051e2/WJSC-16-410-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1443/11056638/ab853cf19ee3/WJSC-16-410-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1443/11056638/749802f25a74/WJSC-16-410-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1443/11056638/b5be28a81bcd/WJSC-16-410-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1443/11056638/48fba2fe65bc/WJSC-16-410-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1443/11056638/03b2a5f83e97/WJSC-16-410-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1443/11056638/9cfebcddfd96/WJSC-16-410-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1443/11056638/04ea158326f0/WJSC-16-410-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1443/11056638/4fbc8917b58c/WJSC-16-410-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1443/11056638/ab3b549286a9/WJSC-16-410-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1443/11056638/45960ca8b6d9/WJSC-16-410-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1443/11056638/53b9d819577e/WJSC-16-410-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1443/11056638/80cf13774b04/WJSC-16-410-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1443/11056638/508406b051e2/WJSC-16-410-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1443/11056638/ab853cf19ee3/WJSC-16-410-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1443/11056638/749802f25a74/WJSC-16-410-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1443/11056638/b5be28a81bcd/WJSC-16-410-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1443/11056638/48fba2fe65bc/WJSC-16-410-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1443/11056638/03b2a5f83e97/WJSC-16-410-g013.jpg

相似文献

[1]
Expansion of human umbilical cord derived mesenchymal stem cells in regenerative medicine.

World J Stem Cells. 2024-4-26

[2]
[SOX9 enhanced chondrogenic differentiation potential of human umbilical cord mesenchymal stem cells through cellular aggregation].

Zhonghua Yi Xue Za Zhi. 2012-8-7

[3]
Zinc enhances the cell adhesion, migration, and self-renewal potential of human umbilical cord derived mesenchymal stem cells.

World J Stem Cells. 2023-7-26

[4]
Lysophosphatidic acid enhances human umbilical cord mesenchymal stem cell viability without differentiation via LPA receptor mediating manner.

Apoptosis. 2017-10

[5]
Study of the biological characteristics of human umbilical cord mesenchymal stem cells after long-time cryopreservation.

Cell Tissue Bank. 2022-12

[6]
Promising new potential for mesenchymal stem cells derived from human umbilical cord Wharton's jelly: sweat gland cell-like differentiative capacity.

J Tissue Eng Regen Med. 2011-9-13

[7]
Human umbilical cord-derived mesenchymal stem cells do not undergo malignant transformation during long-term culturing in serum-free medium.

PLoS One. 2014-6-2

[8]
Efficient expansion and delayed senescence of hUC-MSCs by microcarrier-bioreactor system.

Stem Cell Res Ther. 2023-10-4

[9]
Isolation and proliferation of umbilical cord tissue derived mesenchymal stem cells for clinical applications.

Cell Tissue Bank. 2016-6

[10]
Downregulation of Melanoma Cell Adhesion Molecule (MCAM/CD146) Accelerates Cellular Senescence in Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells.

Stem Cells Transl Med. 2016-4

引用本文的文献

[1]
Extracellular vesicle-derived lncRNA VIM-AS1 promotes diabetic wound healing by promoting glycolysis and alleviating cellular senescence.

Stem Cell Res Ther. 2025-7-1

[2]
TNFRSF11B-modified umbilical cord mesenchymal stem cells as a novel strategy for bone-related diseases by suppressing osteoclast activity.

J Orthop Surg Res. 2025-5-17

[3]
Rekindling Vision: Innovative Strategies for Treating Retinal Degeneration.

Int J Mol Sci. 2025-4-25

[4]
Therapeutic Efficacy and Promise of Human Umbilical Cord Mesenchymal Stem Cell-Derived Extracellular Vesicles in Aging and Age-Related Disorders.

Int J Mol Sci. 2024-12-30

[5]
Effects, methods and limits of the cryopreservation on mesenchymal stem cells.

Stem Cell Res Ther. 2024-9-29

[6]
Gelatin-Based Scaffolds with Carrageenan and Chitosan for Soft Tissue Regeneration.

Gels. 2024-6-28

本文引用的文献

[1]
A robust and standardized method to isolate and expand mesenchymal stromal cells from human umbilical cord.

Cytotherapy. 2023-10

[2]
Clinical utility of mesenchymal stem/stromal cells in regenerative medicine and cellular therapy.

J Biol Eng. 2023-7-11

[3]
Clinical Trials with Mesenchymal Stem Cell Therapies for Osteoarthritis: Challenges in the Regeneration of Articular Cartilage.

Int J Mol Sci. 2023-6-9

[4]
Phase I study of intra-osseous co-transplantation of a single-unit cord blood and mesenchymal stromal cells with reduced intensity conditioning regimens.

Front Oncol. 2023-5-3

[5]
New Sources, Differentiation, and Therapeutic Uses of Mesenchymal Stem Cells 2.0.

Int J Mol Sci. 2023-2-15

[6]
Advances in Mesenchymal Stem Cell Therapy for Osteoarthritis: From Preclinical and Clinical Perspectives.

Bioengineering (Basel). 2023-2-2

[7]
Cardiac Transcription Regulators Differentiate Human Umbilical Cord Mesenchymal Stem Cells into Cardiac Cells.

Altern Lab Anim. 2023-1

[8]
Stem Cells in Regenerative Medicine.

J Clin Med. 2022-9-16

[9]
Stem cell-based therapy for human diseases.

Signal Transduct Target Ther. 2022-8-6

[10]
Effects of Olfactory Mucosa Stem/Stromal Cell and Olfactory Ensheating Cells Secretome on Peripheral Nerve Regeneration.

Biomolecules. 2022-6-11

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索