Shandong Provincial Key Laboratory of Energy Genetics, CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China.
Shandong Energy Institute, Qingdao, China.
Plant Biotechnol J. 2024 Sep;22(9):2530-2540. doi: 10.1111/pbi.14366. Epub 2024 May 1.
Dinitrotoluene sulfonates (DNTSes) are highly toxic hazards regulated by the Resource Conservation and Recovery Act (RCRA) in the United States. The trinitrotoluene (TNT) red water formed during the TNT purification process consists mainly of DNTSes. Certain plants, including switchgrass, reed and alfalfa, can detoxify low concentrations of DNTS in TNT red water-contaminated soils. However, the precise mechanism by which these plants detoxify DNTS remains unknown. In order to aid in the development of phytoremediation resources with high DNTS removal rates, we identified and characterized 1-hydroxymethyl-2,4-dinitrobenzene sulfonic acid (HMDNBS) and its glycosylated product HMDNBS O-glucoside as the degradation products of 2,4-DNT-3-SONa, the major isoform of DNTS in TNT red water-contaminated soils, in switchgrass via LC-MS/MS- and NMR-based metabolite analyses. Transcriptomic analysis revealed that 15 UDP-glycosyltransferase genes were dramatically upregulated in switchgrass plants following 2,4-DNT-3-SONa treatment. We expressed, purified and assayed the activity of recombinant UGT proteins in vitro and identified PvUGT96C10 as the enzyme responsible for the glycosylation of HMDNBS in switchgrass. Overexpression of PvUGT96C10 in switchgrass significantly alleviated 2,4-DNT-3-SONa-induced plant growth inhibition. Notably, PvUGT96C10-overexpressing transgenic switchgrass plants removed 83.1% of 2,4-DNT-3-SONa in liquid medium after 28 days, representing a 3.2-fold higher removal rate than that of control plants. This work clarifies the DNTS detoxification mechanism in plants for the first time, suggesting that PvUGT96C10 is crucial for DNTS degradation. Our results indicate that PvUGT96C10-overexpressing plants may hold great potential for the phytoremediation of TNT red water-contaminated soils.
二硝基甲苯磺酸盐(DNTSes)是美国资源保护与回收法案(RCRA)管制的高度毒性危害物。在 TNT 提纯过程中形成的三硝基甲苯(TNT)红水主要由 DNTSes 组成。某些植物,包括柳枝稷、芦苇和紫花苜蓿,可以解毒 TNT 红水污染土壤中的低浓度 DNTS。然而,这些植物解毒 DNTS 的精确机制尚不清楚。为了帮助开发具有高 DNTS 去除率的植物修复资源,我们通过 LC-MS/MS-和基于 NMR 的代谢物分析,在柳枝稷中鉴定和表征了 1-羟甲基-2,4-二硝基苯磺酸(HMDNBS)及其糖基化产物 HMDNBS O-葡萄糖苷,作为 TNT 红水污染土壤中 DNTS 的主要异构体 2,4-DNT-3-SONa 的降解产物。转录组分析显示,在 2,4-DNT-3-SONa 处理后,柳枝稷植物中 15 个 UDP-糖基转移酶基因显著上调。我们在体外表达、纯化和测定了重组 UGT 蛋白的活性,并鉴定出 PvUGT96C10 是负责柳枝稷中 HMDNBS 糖基化的酶。在柳枝稷中过表达 PvUGT96C10 可显著缓解 2,4-DNT-3-SONa 诱导的植物生长抑制。值得注意的是,与对照植物相比,PvUGT96C10 过表达的转基因柳枝稷植物在 28 天后将液体培养基中的 2,4-DNT-3-SONa 去除了 83.1%,去除率提高了 3.2 倍。这项工作首次阐明了植物中 DNTS 的解毒机制,表明 PvUGT96C10 对 DNTS 降解至关重要。我们的研究结果表明,过表达 PvUGT96C10 的植物可能在 TNT 红水污染土壤的植物修复方面具有巨大潜力。