Suppr超能文献

利用机器学习和生物信息学分析 POLB 的癌症相关突变。

Analysis of Cancer-Associated Mutations of POLB Using Machine Learning and Bioinformatics.

出版信息

IEEE/ACM Trans Comput Biol Bioinform. 2024 Sep-Oct;21(5):1436-1444. doi: 10.1109/TCBB.2024.3395777. Epub 2024 Oct 9.

Abstract

DNA damage is a critical factor in the onset and progression of cancer. When DNA is damaged, the number of genetic mutations increases, making it necessary to activate DNA repair mechanisms. A crucial factor in the base excision repair process, which helps maintain the stability of the genome, is an enzyme called DNA polymerase β (Pol β) encoded by the POLB gene. It plays a vital role in the repair of damaged DNA. Additionally, variations known as Single Nucleotide Polymorphisms (SNPs) in the POLB gene can potentially affect the ability to repair DNA. This study uses bioinformatics tools that extract important features from SNPs to construct a feature matrix, which is then used in combination with machine learning algorithms to predict the likelihood of developing cancer associated with a specific mutation. Eight different machine learning algorithms were used to investigate the relationship between POLB gene variations and their potential role in cancer onset. This study not only highlights the complex link between POLB gene SNPs and cancer, but also underscores the effectiveness of machine learning approaches in genomic studies, paving the way for advanced predictive models in genetic and cancer research.

摘要

DNA 损伤是癌症发生和发展的一个关键因素。当 DNA 受损时,基因突变的数量会增加,这就需要激活 DNA 修复机制。在碱基切除修复过程中,一种名为 DNA 聚合酶 β(Pol β)的酶是至关重要的,它由 POLB 基因编码,有助于维持基因组的稳定性。它在修复受损 DNA 方面发挥着重要作用。此外,POLB 基因中的单核苷酸多态性(SNP)变体可能会影响 DNA 修复的能力。本研究使用生物信息学工具从 SNPs 中提取重要特征来构建特征矩阵,然后结合机器学习算法来预测与特定突变相关的癌症发生的可能性。使用了八种不同的机器学习算法来研究 POLB 基因变异与癌症发生之间的关系。这项研究不仅强调了 POLB 基因 SNPs 与癌症之间的复杂联系,还突出了机器学习方法在基因组研究中的有效性,为遗传和癌症研究中的先进预测模型铺平了道路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验