Suppr超能文献

六价铬对硫基反硝化的抑制机制:生物毒性、生物电子特性和微生物进化。

Inhibitory mechanism of Cr(VI) on sulfur-based denitrification: Bio-toxicity, bio-electron characteristics, and microbial evolution.

机构信息

School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China.

School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China.

出版信息

J Hazard Mater. 2024 Jul 5;472:134447. doi: 10.1016/j.jhazmat.2024.134447. Epub 2024 Apr 26.

Abstract

Sulfur-based denitrification is a promising technology for efficient nitrogen removal in low-carbon wastewater, while it is easily affected by toxic substances. This study revealed the inhibitory mechanism of Cr(VI) on thiosulfate-based denitrification, including bio-toxicity and bio-electron characteristics response. The activity of nitrite reductase (NIR) was more sensitive to Cr(VI) than that of nitrate reductase (NAR), and NIR was inhibited by 21.32 % and 19.86 % under 5 and 10 mg/L Cr(VI), resulting in 10.12 and 15.62 mg/L of NO-N accumulation. The biofilm intercepted 36.57 % of chromium extracellularly by increasing 25.78 % of extracellular polymeric substances, thereby protecting microbes from bio-toxicity under 5 mg/L Cr(VI). However, it was unable to resist 20-30 mg/L of Cr(VI) bio-toxicity as 19.95 and 14.29 mg Cr/(g volatile suspended solids) invaded intracellularly, inducing the accumulation of reactive oxygen species by 165.98 % and 169.12 %, which triggered microbial oxidative-stress and damaged the cells. In terms of electron transfer, SO oxidation was inhibited, and parts of electrons were redirected intracellularly to maintain microbial activity, resulting in insufficient electron donors. Meanwhile, the contents of flavin adenine dinucleotide and cytochrome c decreased under 5-30 mg/L Cr(VI), reducing the electron acquisition rate of denitrification. Thermomonas (the dominant genus) possessed denitrification and Cr(VI) resistance abilities, playing an important role in antioxidant stress and biofilm formation. ENVIRONMENTAL IMPLICATION: Sulfur-based denitrification (SBD) is a promising method for nitrate removal in low-carbon wastewater, while toxic heavy metals such as Cr(VI) negatively impair denitrification. This study elucidated Cr(VI) inhibitory mechanisms on SBD, including bio-toxicity response, bio-electron characteristics, and microbial community structure. Higher concentrations Cr(VI) led to intracellular invasion and oxidative stress, evidenced by ROS accumulation. Moreover, Cr(VI) disrupted electron flow by inhibiting thiosulfate oxidation and affecting electron acquisition by denitrifying enzymes. This study provided valuable insights into Cr(VI) toxicity, which is of great significance for improving wastewater treatment technologies and maintaining efficient and stable operation of SBD in the face of complex environmental challenges.

摘要

基于硫的反硝化是一种从低碳废水中高效去除氮的有前途的技术,但它很容易受到有毒物质的影响。本研究揭示了 Cr(VI)对硫代硫酸盐反硝化的抑制机制,包括生物毒性和生物电子特性的响应。亚硝酸还原酶(NIR)比硝酸还原酶(NAR)对 Cr(VI)更敏感,在 5 和 10 mg/L Cr(VI)下分别抑制 21.32%和 19.86%,导致 10.12 和 15.62 mg/L 的 NO-N 积累。生物膜通过增加 25.78%的胞外聚合物,从外部拦截 36.57%的铬,从而在 5 mg/L Cr(VI)下保护微生物免受生物毒性。然而,当 19.95 和 14.29 mg Cr/(g 挥发性悬浮固体)进入细胞内时,它无法抵抗 20-30 mg/L 的 Cr(VI)生物毒性,导致活性氧物质的积累增加 165.98%和 169.12%,引发微生物氧化应激并破坏细胞。在电子转移方面,SO 氧化受到抑制,部分电子被重新引导到细胞内以维持微生物的活性,从而导致电子供体不足。同时,在 5-30 mg/L Cr(VI)下,黄素腺嘌呤二核苷酸和细胞色素 c 的含量下降,降低了反硝化的电子获取率。硫单胞菌(优势属)具有反硝化和 Cr(VI)抗性能力,在抗氧化应激和生物膜形成中发挥重要作用。环境意义:基于硫的反硝化(SBD)是从低碳废水中去除硝酸盐的一种很有前途的方法,但有毒重金属如 Cr(VI)会对反硝化产生负面影响。本研究阐明了 Cr(VI)对 SBD 的抑制机制,包括生物毒性反应、生物电子特性和微生物群落结构。较高浓度的 Cr(VI)导致细胞内入侵和氧化应激,表现为 ROS 积累。此外,Cr(VI)通过抑制硫代硫酸盐氧化和影响反硝化酶的电子获取来破坏电子流。本研究为 Cr(VI)的毒性提供了有价值的见解,这对于提高废水处理技术和在复杂的环境挑战下保持 SBD 的高效和稳定运行具有重要意义。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验