Suppr超能文献

基于人工智能的盐水对比经胸超声心动图右向左分流程度自动评估方法。

An Artificial Intelligence-Driven Approach for Automatic Evaluation of Right-to-Left Shunt Grades in Saline-Contrasted Transthoracic Echocardiography.

机构信息

Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.

Deepwise AI Laboratory, Beijing, China.

出版信息

Ultrasound Med Biol. 2024 Aug;50(8):1134-1142. doi: 10.1016/j.ultrasmedbio.2024.03.019. Epub 2024 May 1.

Abstract

BACKGROUND

Intracardiac or pulmonary right-to-left shunt (RLS) is a common cardiac anomaly associated with an increased risk of neurological disorders, specifically cryptogenic stroke. Saline-contrasted transthoracic echocardiography (scTTE) is often used for RLS diagnosis. However, the identification of saline microbubbles in the left heart can be challenging for novice residents, potentially leading to a delay in diagnosis and treatment. In this study, we proposed an artificial intelligence (AI)-based algorithm designed to automatically detect microbubbles in scTTE images and evaluate right-to-left shunt grades. This tool aims to support residency training and decrease the workload of cardiologists.

METHODS

A dataset of 23,665 scTTE images obtained from 174 individuals was included in this study. This dataset was partitioned into a training set (n = 20,475) and an internal validation set (n = 3,190) on a patient-level basis. An additional cohort of 33 patients diagnosed with cryptogenic ischemic stroke was enrolled as an external validation set. The proposed algorithm for right-to-left shunt degree classification employed the EfficientNet-b4 model, and the model's performance was evaluated using the area under the receiver operating characteristic curve (AUC), sensitivity, and specificity, and compared to the performance of residents.

RESULTS

Our AI model demonstrated robust performance with an accuracy of 0.926, sensitivity of 0.827, and specificity of 0.951 on the internal testing dataset. In the external validation set, our AI model exhibited diagnostic accuracy, sensitivity, and specificity of 0.864, 0.818, and 0.909, respectively. In comparison, residents achieved values of 0.727, 0.636, and 0.818, respectively.

CONCLUSION

Our AI model provides a swift, precise, and easily deployable methodology for grading the degree of right-to-left shunt in scTTE, carrying substantial implications for routine clinical practice. Residents can benefit from our artificial intelligence-based algorithm, enhancing both the accuracy and efficiency of RLS diagnosis.

摘要

背景

心内或肺内右向左分流(RLS)是一种常见的心脏异常,与神经障碍风险增加相关,特别是隐源性卒中。盐水对比经胸超声心动图(scTTE)常用于 RLS 诊断。然而,新手住院医师可能难以识别左心内的盐水微泡,从而导致诊断和治疗的延迟。在这项研究中,我们提出了一种基于人工智能(AI)的算法,旨在自动检测 scTTE 图像中的微泡并评估右向左分流等级。该工具旨在支持住院医师培训并减轻心脏病专家的工作量。

方法

该研究纳入了来自 174 名个体的 23665 例 scTTE 图像数据集。该数据集在患者层面上分为训练集(n=20475)和内部验证集(n=3190)。另外还招募了 33 名被诊断为隐源性缺血性卒中的患者作为外部验证集。用于右向左分流程度分类的 AI 算法采用了 EfficientNet-b4 模型,使用受试者工作特征曲线下面积(AUC)、敏感性和特异性评估模型性能,并与住院医师的表现进行比较。

结果

我们的 AI 模型在内部测试数据集上表现出稳健的性能,准确率为 0.926,敏感性为 0.827,特异性为 0.951。在外部验证集中,我们的 AI 模型的诊断准确率、敏感性和特异性分别为 0.864、0.818 和 0.909。相比之下,住院医师的表现分别为 0.727、0.636 和 0.818。

结论

我们的 AI 模型为 scTTE 中的右向左分流程度分级提供了一种快速、准确且易于部署的方法,对常规临床实践具有重要意义。住院医师可以受益于我们的基于人工智能的算法,提高 RLS 诊断的准确性和效率。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验