Department of Biotechnology, Pondicherry University, Kalapet, Puducherry, India.
Department of Green Energy Technology, Pondicherry University, Kalapet, Puducherry, India.
Int J Biol Macromol. 2024 May;268(Pt 1):131769. doi: 10.1016/j.ijbiomac.2024.131769. Epub 2024 Apr 30.
This study investigates the synthesis of selenium nanoparticles (SeNPs), owing to the low cost and abundance of selenium. However, the toxicity of SeNP prompts the development of a selenium nanocomposite (SeNC) containing pectin, keratin, and ferulic acid to improve the bioactivity of Se[0]. Further, incorporating the SeNC in a suitable formulation for drug delivery as a transdermal patch was worth studying. Accordingly, various analytical techniques were used to characterize the SeNPs and the SeNC, confirming successful synthesis and encapsulation. The SeNC exhibited notable particle size of 448.2 ± 50.2 nm, high encapsulation efficiency (98.90 % ± 2.4 %), 28.1 ± 0.45 drug loading, and sustained drug release at pH 5.5. Zeta potential and XPS confirmed the zero-oxidation state. The supramolecular structure was evident from spectral analysis endorsing the semi-crystalline nature of the SeNC and SEM images showcasing flower-shaped structures. Further, the SeNC demonstrated sustained drug release (approx. 22 % at 48 h) and wound-healing potential in L929 fibroblast cells. Subsequently, the SeNC loaded into a gelling agent exhibited shear thinning properties and improved drug release by nearly 58 %. A 3D printed reservoir-type transdermal patch was developed utilizing the SeNC-loaded gel, surpassing commercially available patches in characteristics such as % moisture uptake, tensile strength, and hydrophobicity. The patch, evaluated through permeation studies and CAM assay, exhibited controlled drug release and angiogenic properties for enhanced wound healing. The study concludes that this patch can serve as a smart dressing with tailored functionality for different wound stages, offering a promising novel drug delivery system for wound healing.
本研究旨在合成硒纳米粒子(SeNPs),因为硒的成本低且含量丰富。然而,SeNP 的毒性促使人们开发出一种含有果胶、角蛋白和阿魏酸的硒纳米复合材料(SeNC),以提高 Se[0]的生物活性。此外,将 SeNC 掺入一种合适的药物传递制剂中,作为透皮贴剂进行研究是值得的。因此,使用各种分析技术对 SeNPs 和 SeNC 进行了表征,证实了成功的合成和封装。SeNC 的粒径为 448.2±50.2nm,包封效率(98.90%±2.4%)高,载药量为 28.1±0.45,在 pH 5.5 下具有持续的药物释放。Zeta 电位和 XPS 证实了零氧化态。光谱分析证实了超分子结构,支持了 SeNC 的半结晶性质,SEM 图像显示了花状结构。此外,SeNC 还表现出持续的药物释放(约 48 小时内释放 22%)和在 L929 成纤维细胞中的伤口愈合潜力。随后,负载到凝胶中的 SeNC 表现出剪切变稀特性,并使药物释放增加近 58%。利用负载 SeNC 的凝胶开发了一种 3D 打印储库型透皮贴剂,在水分吸收、拉伸强度和疏水性等特性方面超过了市售贴片。通过渗透研究和 CAM 试验评估了该贴片,结果表明其具有控制药物释放和促进血管生成的特性,有助于伤口愈合。该研究得出结论,这种贴片可以作为一种具有定制功能的智能敷料,用于不同的伤口阶段,为伤口愈合提供一种有前途的新型药物传递系统。