Lynch Charles, Adeyeye Ajibayo, Abbara El Mehdi, Umar Ashraf, Alhendi Mohammed, Minnella Chris, Iannotti Joseph, Stoffel Nancy, Poliks Mark, Tentzeris Manos M
Georgia Institute of Technology, School of ECE, Atlanta, GA, 30308, USA.
Binghamton University, Binghamton, NY, 13902, USA.
Sci Rep. 2024 May 1;14(1):10002. doi: 10.1038/s41598-024-58257-7.
With the current development of the 5G infrastructure, there presents a unique opportunity for the deployment of battery-less mmWave reflect-array-based sensors. These fully-passive devices benefit from having a larger detectability than alternative battery-less solutions to create self-monitoring megastructures. The presented 'smart' skin sensor uses a Van-Atta array design enabling ubiquitous local strain monitoring for the structural health monitoring of composite materials featuring wide interrogation angles. Proof-of-concept prototypes of these 'smart' skin millimeter-wave identification tags, that can be mounted on or embedded within common materials used in wind turbine blades, present a highly-detectable radar cross-section of - 33.75 dBsm and - 35.00 dBsm for mounted and embedded sensors respectively. Both sensors display a minimum resolution of 202 -strain even at 40 off-axis enabling interrogation of the fully-passive sensor at oblique angles of incidence. When interrogated from a proof-of-concept reader, the fully-passive, sticker-like mmID enables local strain monitoring of both carbon fiber and glass fiber composite materials. The sensors display a repeatable and recoverable response over 0-3000 -strain and a sensitivity of 7.55 kHz/ -strain and 7.92 kHz/ -strain for mounted and embedded sensors, respectively. Thus, the presented 5G-enabled battery-less sensor presents massive potential for the development of ubiquitous Digital Twinning of composite materials in future smart cities architectures.
随着5G基础设施的当前发展,为部署基于无电池毫米波反射阵列的传感器带来了独特的机遇。这些全被动设备相较于其他无电池解决方案,具有更大的可探测性,从而有利于创建自我监测的巨型结构。所展示的“智能”皮肤传感器采用范阿塔阵列设计,可实现对具有宽探测角度的复合材料进行结构健康监测的无处不在的局部应变监测。这些“智能”皮肤毫米波识别标签的概念验证原型,可安装在风力涡轮机叶片中使用的常见材料上或嵌入其中,对于安装式和嵌入式传感器,其雷达散射截面积分别高达-33.75 dBsm和-35.00 dBsm。即使在40°离轴时,两种传感器的最小分辨率均为202 με,能够以斜入射角对全被动传感器进行探测。当从概念验证读取器进行探测时,这种全被动、类似贴纸的毫米波识别标签能够对碳纤维和玻璃纤维复合材料进行局部应变监测。这些传感器在0至3000 με应变范围内显示出可重复且可恢复的响应,安装式和嵌入式传感器的灵敏度分别为7.55 kHz/με和7.92 kHz/με。因此,所展示的支持5G的无电池传感器在未来智慧城市架构中复合材料的无处不在的数字孪生发展方面具有巨大潜力。