Suppr超能文献

开发一种用于预测全膝关节置换术后后交叉韧带保留的机器学习预测模型。

Developing a Machine-Learning Predictive Model for Retention of Posterior Cruciate Ligament in Patients Undergoing Total Knee Arthroplasty.

机构信息

Arthritis Clinical and Research Center, Peking University People's Hospital, Peking University, Beijing, China.

Orthopedic Department, Beijing Jishuitan Hospital, Beijing, China.

出版信息

Orthop Surg. 2024 Jun;16(6):1381-1389. doi: 10.1111/os.14076. Epub 2024 May 1.

Abstract

OBJECTIVE

Predicting whether the posterior cruciate ligament (PCL) should be preserved during total knee arthroplasty (TKA) procedures is a complex task in the preoperative phase. The choice to either retain or excise the PCL has a substantial effect on the surgical outcomes and biomechanical integrity of the knee joint after the operation. To enhance surgeons' ability to predict the removal and retention of the PCL in patients before TKA, we developed machine learning models. We also identified significant feature factors that contribute to accurate predictions during this process.

METHODS

Patients' data on TKA continuously performed by a single surgeon who had intended initially to undergo implantation of cruciate-retaining (CR) prostheses was collected. During the sacrifice of PCL, we utilized anterior-stabilized (AS) tibial bearings. The dataset was split into CR and AS categories to form distinct groups. Relevant information regarding age, gender, body mass index (BMI), the affected side, and preoperative diagnosis was extracted by reviewing the medical records of the patients. To ensure the authenticity of the research, an initial step involved capturing X-ray images before the surgery. These images were then analyzed to determine the height of the medial condyle (MMH) and lateral condyle (LMH), as well as the ratios between MLW and MMH and MLW and LMH. Additionally, the insall-salvati index (ISI) was calculated, and the severity of any varus or valgus deformities was assessed. Eight machine-learning methods were developed to predict the retention of PCL in TKA. Risk factor analysis was performed using the SHApley Additive exPlanations method.

RESULTS

A total of 307 knee joints from 266 patients were included, among which there were 254 females and 53 males. A stratified random sampling technique was used to split patients in a 70:30 ratio into a training dataset and a testing dataset. Eight machine-learning models were trained using data feeding. Except for the AUC of the LGBM Classifier, which is 0.70, the AUCs of other machine learning models are all lower than 0.70. In importance-based analysis, ISI, MMH, LMH, deformity, and age were confirmed as important predictive factors for PCL retention in operations.

CONCLUSION

The LGBM Classifier model achieved the best performance in predicting PCL retention in TKA. Among the potential risk factors, ISI, MMH, LMH, and deformity played essential roles in the prediction of PCL retention.

摘要

目的

在全膝关节置换术(TKA)术前阶段,预测后交叉韧带(PCL)是否应保留是一项复杂的任务。选择保留或切除 PCL 对术后膝关节的手术结果和生物力学完整性有重大影响。为了提高外科医生在 TKA 前预测患者 PCL 切除和保留的能力,我们开发了机器学习模型。我们还确定了在这个过程中有助于准确预测的重要特征因素。

方法

收集了一位外科医生连续进行的 TKA 患者的数据,该外科医生最初打算植入交叉韧带保留(CR)假体。在 PCL 牺牲过程中,我们使用了前稳定(AS)胫骨轴承。将数据集分为 CR 和 AS 两类,形成不同的组。通过查阅患者的病历,提取了与年龄、性别、体重指数(BMI)、患侧和术前诊断相关的信息。为了确保研究的真实性,首先要在手术前拍摄 X 光片。然后对这些图像进行分析,以确定内侧髁(MMH)和外侧髁(LMH)的高度,以及 MLW 和 MMH 之间以及 MLW 和 LMH 之间的比值。此外,还计算了 Insall-Salvati 指数(ISI),并评估了任何内翻或外翻畸形的严重程度。开发了 8 种机器学习方法来预测 TKA 中 PCL 的保留。使用 Shapley Additive exPlanations 方法进行风险因素分析。

结果

共纳入 266 例患者的 307 个膝关节,其中女性 254 例,男性 53 例。采用分层随机抽样技术将患者按 70:30 的比例分为训练数据集和测试数据集。使用数据馈送训练了 8 种机器学习模型。除 LGBM 分类器的 AUC 为 0.70 外,其他机器学习模型的 AUC 均低于 0.70。在基于重要性的分析中,ISI、MMH、LMH、畸形和年龄被确认为操作中 PCL 保留的重要预测因素。

结论

LGBM 分类器模型在预测 TKA 中 PCL 保留方面表现最佳。在潜在的风险因素中,ISI、MMH、LMH 和畸形在预测 PCL 保留方面起着重要作用。

相似文献

2
Preoperative Factors Predicting the Preservation of the Posterior Cruciate Ligament in Total Knee Arthroplasty.
Orthop Surg. 2022 Sep;14(9):2203-2209. doi: 10.1111/os.13439. Epub 2022 Aug 17.
4
In-vivo elongation of anterior and posterior cruciate ligament in bi-cruciate retaining total knee arthroplasty.
J Orthop Res. 2018 Dec;36(12):3239-3246. doi: 10.1002/jor.24132. Epub 2018 Sep 19.
5
Comparative evaluation of posterior cruciate ligament in total knee arthroplasty.
J Orthop Surg (Hong Kong). 2017 Jan;25(1):2309499017690976. doi: 10.1177/2309499017690976.

本文引用的文献

2
Preoperative Factors Predicting the Preservation of the Posterior Cruciate Ligament in Total Knee Arthroplasty.
Orthop Surg. 2022 Sep;14(9):2203-2209. doi: 10.1111/os.13439. Epub 2022 Aug 17.
3
Random Search as a Neural Network Optimization Strategy for Convolutional-Neural-Network (CNN)-based Noise Reduction in CT.
Proc SPIE Int Soc Opt Eng. 2021 Feb;11596. doi: 10.1117/12.2582143. Epub 2021 Feb 15.
4
Magnetic resonance imaging overestimates patellar height compared with radiographs.
Knee Surg Sports Traumatol Arthrosc. 2022 Oct;30(10):3461-3469. doi: 10.1007/s00167-022-06953-0. Epub 2022 Mar 31.
5
Articulation of the femoral condyle during knee flexion.
J Biomech. 2022 Jan;131:110906. doi: 10.1016/j.jbiomech.2021.110906. Epub 2021 Dec 11.
6
From Local Explanations to Global Understanding with Explainable AI for Trees.
Nat Mach Intell. 2020 Jan;2(1):56-67. doi: 10.1038/s42256-019-0138-9. Epub 2020 Jan 17.
7
Effect of additional distal femoral resection on flexion deformity in posterior-stabilized total knee arthroplasty.
Knee Surg Sports Traumatol Arthrosc. 2020 Sep;28(9):2924-2929. doi: 10.1007/s00167-019-05675-0. Epub 2019 Aug 16.
8
What to Know for Selecting Cruciate-Retaining or Posterior-Stabilized Total Knee Arthroplasty.
Clin Orthop Surg. 2019 Jun;11(2):142-150. doi: 10.4055/cios.2019.11.2.142. Epub 2019 May 9.
9
A systematic review shows no performance benefit of machine learning over logistic regression for clinical prediction models.
J Clin Epidemiol. 2019 Jun;110:12-22. doi: 10.1016/j.jclinepi.2019.02.004. Epub 2019 Feb 11.
10
Total knee arthroplasty in the varus knee: tips and tricks.
Int Orthop. 2019 Jan;43(1):151-158. doi: 10.1007/s00264-018-4116-3. Epub 2018 Aug 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验