Shen Caiyu, Wang Shuai, Huo Ruiheng, Huang Yuli, Yang Shu
School of Health Management, Bengbu Medical University, Bengbu, Anhui, 233030, China.
School of Public Health, Bengbu Medical University, Bengbu, Anhui, 233030, China.
BMC Cardiovasc Disord. 2025 Mar 19;25(1):197. doi: 10.1186/s12872-025-04628-5.
To evaluate the predictive utility of machine learning and nomogram in predicting in-hospital mortality in patients with acute myocardial infarction complicated by cardiogenic shock (AMI-CS), and to visualize the model results in order to analyze the impact of these predictors on the patients' prognosis.
A retrospective analysis was conducted on 332 adult patients who were diagnosed with AMI-CS and admitted to the ICU for the first time within the eICU Collaborative Research Database (eICU-CRD). AdaBoost, XGBoost, LightGBM, Random Forest and logistic regression nomogram were developed utilizing the random forest recursive elimination (RF-RFE) and least absolute shrinkage and selection operator (LASSO) algorithms for feature selection.
Compared to the machine learning models, the nomogram demonstrated superior predictive accuracy for mortality in patients with AMI-CS, with an AUC value of 0.869 (95% CI: 0.803, 0.883) and an F1 score of 0.897 for the internal test set of nomogram, and an AUC of 0.770 (95% CI: 0.702, 0.801) and an F1 score of 0.832 for the external validation set.
Nomogram enhance the interpretability and transparency of the models, leading to more reliable prognostic predictions for AMI-CS patients. This facilitates clinicians in making precise decisions, thereby enhancing patient prognosis.
评估机器学习和列线图在预测急性心肌梗死合并心源性休克(AMI-CS)患者院内死亡率方面的预测效用,并将模型结果可视化,以分析这些预测因素对患者预后的影响。
对电子重症监护病房协作研究数据库(eICU-CRD)中332例首次诊断为AMI-CS并入住重症监护病房的成年患者进行回顾性分析。利用随机森林递归消除(RF-RFE)和最小绝对收缩和选择算子(LASSO)算法进行特征选择,开发了AdaBoost、XGBoost、LightGBM、随机森林和逻辑回归列线图。
与机器学习模型相比,列线图在预测AMI-CS患者死亡率方面显示出更高的预测准确性,列线图内部测试集的AUC值为0.869(95%CI:0.803,0.883),F1评分为0.897,外部验证集的AUC为0.770(95%CI:0.702,0.801),F1评分为0.832。
列线图提高了模型的可解释性和透明度,为AMI-CS患者带来更可靠的预后预测。这有助于临床医生做出精确决策,从而改善患者预后。