Suppr超能文献

内隐联想测验及其难度(若干):引入测验难度概念以增加真分数方差,从而提高内隐联想测验的预测力。

The Implicit Association Test and its difficulty(ies): Introducing the test difficulty concept to increase the true-score variance and, consequently, the predictive power of implicit association tests.

机构信息

Department of General Psychology II, Friedrich Schiller University Jena.

Department of Psychological Methodology, Friedrich Schiller University Jena.

出版信息

J Pers Soc Psychol. 2024 Jul;127(1):31-57. doi: 10.1037/pspa0000391. Epub 2024 May 2.

Abstract

We introduce the test difficulty concept from classical test theory to tackle the issue of low predictive power of implicit association tests (IATs). Following classical test theory, we argue that IATs of moderate difficulty (defined as mean IAT scores of zero) have more predictive power than IATs of extreme difficulties (defined as mean IAT scores deviating strongly from zero). Furthermore, we assume this relationship to be mediated by the true-score variance in IAT scores, with moderate difficulty resulting in more true-score variance. To test our hypotheses, we used nonexperimental (Studies 1 and 2) and experimental designs (Study 3). In Studies 1 and 2, we compared IATs of different test difficulties with regard to their ability to predict direct attitude measures, drawing on the Attitudes, Identities, and Individual Differences study. In Study 1, a subset of 95 attitude IATs ( = 127,259) was analyzed using multilevel structural equation models. As expected, IAT test difficulty strongly moderated the predictive power of IATs, and this effect was mediated by IAT true-score variance. In Study 2, we replicated the results with the same analyses but a different subset of 95 identity IATs ( = 43,745). In Study 3, we experimentally manipulated the IAT test difficulty. In total, three IATs ( = 480) were analyzed using multigroup structural equation models. Again, the IAT closer to moderate difficulty had more true-score variance and predictive power than the IATs of extreme difficulty. Accordingly, for correlational research, we recommend developing moderately difficult IATs to maximize IAT true-score variance and provide suggestions on how to achieve that. (PsycInfo Database Record (c) 2024 APA, all rights reserved).

摘要

我们从经典测试理论中引入测试难度的概念来解决内隐联想测验(IAT)预测能力低的问题。根据经典测试理论,我们认为中等难度的 IAT(定义为零均值 IAT 分数)比极端难度的 IAT(定义为明显偏离零的 IAT 分数均值)更具预测能力。此外,我们假设这种关系受 IAT 分数真分数方差的中介,中等难度导致更大的真分数方差。为了检验我们的假设,我们使用了非实验(研究 1 和 2)和实验设计(研究 3)。在研究 1 和 2 中,我们根据“态度、身份和个体差异研究”,比较了不同测试难度的 IAT 与直接态度测量的预测能力,利用多层次结构方程模型进行分析。在研究 1 中,分析了 95 个态度 IAT 的子集(= 127259),使用多层结构方程模型。正如预期的那样,IAT 测试难度强烈调节了 IAT 的预测能力,这种效应受 IAT 真分数方差的中介。在研究 2 中,我们使用相同的分析方法但不同的 95 个身份 IAT 子集(= 43745)重复了结果。在研究 3 中,我们实验性地操纵了 IAT 测试难度。总共使用多组结构方程模型分析了三个 IAT(= 480)。同样,接近中等难度的 IAT 比极端难度的 IAT 具有更大的真分数方差和预测能力。因此,对于相关研究,我们建议开发中等难度的 IAT,以最大限度地提高 IAT 真分数方差,并提供如何实现这一目标的建议。(PsycINFO 数据库记录(c)2024 APA,保留所有权利)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验