Suppr超能文献

基于对比度最大化的事件光流、深度和自我运动估计的秘密。

Secrets of Event-Based Optical Flow, Depth and Ego-Motion Estimation by Contrast Maximization.

作者信息

Shiba Shintaro, Klose Yannick, Aoki Yoshimitsu, Gallego Guillermo

出版信息

IEEE Trans Pattern Anal Mach Intell. 2024 Dec;46(12):7742-7759. doi: 10.1109/TPAMI.2024.3396116. Epub 2024 Nov 6.

Abstract

Event cameras respond to scene dynamics and provide signals naturally suitable for motion estimation with advantages, such as high dynamic range. The emerging field of event-based vision motivates a revisit of fundamental computer vision tasks related to motion, such as optical flow and depth estimation. However, state-of-the-art event-based optical flow methods tend to originate in frame-based deep-learning methods, which require several adaptations (data conversion, loss function, etc.) as they have very different properties. We develop a principled method to extend the Contrast Maximization framework to estimate dense optical flow, depth, and ego-motion from events alone. The proposed method sensibly models the space-time properties of event data and tackles the event alignment problem. It designs the objective function to prevent overfitting, deals better with occlusions, and improves convergence using a multi-scale approach. With these key elements, our method ranks first among unsupervised methods on the MVSEC benchmark and is competitive on the DSEC benchmark. Moreover, it allows us to simultaneously estimate dense depth and ego-motion, exposes the limitations of current flow benchmarks, and produces remarkable results when it is transferred to unsupervised learning settings. Along with various downstream applications shown, we hope the proposed method becomes a cornerstone on event-based motion-related tasks.

摘要

事件相机对场景动态做出响应,并提供自然适用于运动估计的信号,具有诸如高动态范围等优点。基于事件的视觉这一新兴领域促使人们重新审视与运动相关的基本计算机视觉任务,如光流和深度估计。然而,当前基于事件的光流方法往往源于基于帧的深度学习方法,由于它们具有非常不同的特性,因此需要进行一些调整(数据转换、损失函数等)。我们开发了一种有原则的方法,将对比度最大化框架扩展为仅从事件中估计密集光流、深度和自我运动。所提出的方法合理地对事件数据的时空特性进行建模,并解决事件对齐问题。它设计目标函数以防止过拟合,更好地处理遮挡,并使用多尺度方法提高收敛性。有了这些关键要素,我们的方法在MVSEC基准测试的无监督方法中排名第一,在DSEC基准测试中具有竞争力。此外,它使我们能够同时估计密集深度和自我运动,揭示了当前光流基准测试的局限性,并在转移到无监督学习设置时产生显著结果。连同所示的各种下游应用,我们希望所提出的方法成为基于事件的运动相关任务的基石。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验