Suppr超能文献

羊模型评估支架植入生物材料修复临界尺寸下颌骨缺损的临床前试验方案。

A Preclinical Trial Protocol Using an Ovine Model to Assess Scaffold Implant Biomaterials for Repair of Critical-Sized Mandibular Defects.

机构信息

Integrated Prosthetics and Reconstruction, Department of Head and Neck Surgery, Chris O'Brien Lifehouse, Camperdown, NSW 2050, Australia.

Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia.

出版信息

ACS Biomater Sci Eng. 2024 May 13;10(5):2863-2879. doi: 10.1021/acsbiomaterials.4c00262. Epub 2024 May 2.

Abstract

The present work describes a preclinical trial (, and ) protocol to assess the biomechanical performance and osteogenic capability of 3D-printed polymeric scaffolds implants used to repair partial defects in a sheep mandible. The protocol spans multiple steps of the medical device development pipeline, including initial concept design of the scaffold implant, digital twin finite element modeling, manufacturing of the device prototype, device implantation, and laboratory mechanical testing. First, a patient-specific one-body scaffold implant used for reconstructing a critical-sized defect along the lower border of the sheep mandible ramus was designed using on computed-tomographic (CT) imagery and computer-aided design software. Next, the biomechanical performance of the implant was predicted numerically by simulating physiological load conditions in a digital twin finite element model of the sheep mandible. This allowed for possible redesigning of the implant prior to commencing experimentation. Then, two types of polymeric biomaterials were used to manufacture the mandibular scaffold implants: poly ether ether ketone (PEEK) and poly ether ketone (PEK) printed with fused deposition modeling (FDM) and selective laser sintering (SLS), respectively. Then, after being implanted for 13 weeks vivo, the implant and surrounding bone tissue was harvested and microCT scanned to visualize and quantify neo-tissue formation in the porous space of the scaffold. Finally, the implant and local bone tissue was assessed by laboratory mechanical testing to quantify the osteointegration. The protocol consists of six component procedures: (i) scaffold design and finite element analysis to predict its biomechanical response, (ii) scaffold fabrication with FDM and SLS 3D printing, (iii) surface treatment of the scaffold with plasma immersion ion implantation (PIII) techniques, (iv) ovine mandibular implantation, (v) postoperative sheep recovery, euthanasia, and harvesting of the scaffold and surrounding host bone, microCT scanning, and (vi) laboratory mechanical tests of the harvested scaffolds. The results of microCT imagery and 3-point mechanical bend testing demonstrate that PIII-SLS-PEK is a promising biomaterial for the manufacturing of scaffold implants to enhance the bone-scaffold contact and bone ingrowth in porous scaffold implants. MicroCT images of the harvested implant and surrounding bone tissue showed encouraging new bone growth at the scaffold-bone interface and inside the porous network of the lattice structure of the SLS-PEK scaffolds.

摘要

本研究描述了一项临床前试验(,和)方案,旨在评估用于修复绵羊下颌骨部分缺损的 3D 打印聚合物支架植入物的生物力学性能和成骨能力。该方案涵盖了医疗器械开发管道的多个步骤,包括支架植入物的初始概念设计、数字孪生有限元建模、设备原型制造、植入和实验室机械测试。首先,使用基于计算机断层扫描(CT)图像和计算机辅助设计软件设计了一种用于重建绵羊下颌骨支线下缘临界尺寸缺陷的个体化一体式支架植入物。接下来,通过模拟绵羊下颌骨数字孪生有限元模型中的生理负荷条件,对植入物的生物力学性能进行数值预测。这使得在开始实验之前可以对植入物进行可能的重新设计。然后,使用两种类型的聚合物生物材料制造下颌骨支架植入物:聚醚醚酮(PEEK)和聚醚酮(PEK),分别采用熔融沉积建模(FDM)和选择性激光烧结(SLS)打印。然后,在体内植入 13 周后,取出植入物和周围骨组织进行微 CT 扫描,以可视化和量化支架多孔空间内的新生组织形成。最后,通过实验室机械测试评估植入物和局部骨组织,以量化其骨整合。该方案由六个组成部分组成:(i)支架设计和有限元分析,以预测其生物力学响应;(ii)采用 FDM 和 SLS 3D 打印制造支架;(iii)采用等离子体浸没离子注入(PIII)技术对支架进行表面处理;(iv)绵羊下颌骨植入;(v)术后绵羊恢复、安乐死和支架及周围宿主骨的取出、微 CT 扫描;(vi)取出支架的实验室机械测试。微 CT 图像和三点弯曲机械测试的结果表明,PIII-SLS-PEK 是制造支架植入物的一种有前途的生物材料,可增强多孔支架植入物中的骨-支架接触和骨向内生长。取出的植入物和周围骨组织的微 CT 图像显示,在支架-骨界面和 SLS-PEK 支架的晶格结构多孔网络内有令人鼓舞的新骨生长。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验