Department of Mathematics, Pabna University of Science and Technology, Pabna, Bangladesh.
School of Science and Technology, University of New England, Armidale, NSW, Australia.
PLoS One. 2024 May 2;19(5):e0300435. doi: 10.1371/journal.pone.0300435. eCollection 2024.
In this paper, we investigate the (2+1)-dimensional Kadomtsev-Petviashvili-Benjamin-Bona Mahony equation using two effective methods: the unified scheme and the advanced auxiliary equation scheme, aiming to derive precise wave solutions. These solutions are expressed as combinations of trigonometric, rational, hyperbolic, and exponential functions. Visual representations, including three-dimensional (3D) and two-dimensional (2D) combined charts, are provided for some of these solutions. The influence of the nonlinear parameter p on the wave type is thoroughly examined through diverse figures, illustrating the profound impact of nonlinearity. Additionally, we briefly investigate the Hamiltonian function and the stability of the model using a planar dynamical system approach. This involves examining trajectories, isoclines, and nullclines to illustrate stable solution paths for the wave variables. Numerical results demonstrate that these methods are reliable, straightforward, and potent tools for analyzing various nonlinear evolution equations found in physics, applied mathematics, and engineering.
在本文中,我们使用两种有效方法:统一方案和先进辅助方程方案,研究了(2+1)维 Kadomtsev-Petviashvili-Benjamin-Bona Mahony 方程,旨在推导出精确的波解。这些解表示为三角函数、有理函数、双曲函数和指数函数的组合。我们提供了一些解的三维(3D)和二维(2D)组合图的可视化表示。通过不同的图形,彻底研究了非线性参数 p 对波型的影响,说明了非线性的深远影响。此外,我们还使用平面动力系统方法简要研究了模型的哈密顿函数和稳定性。这涉及检查轨迹、等倾线和零流线,以说明波变量的稳定解路径。数值结果表明,这些方法是分析物理、应用数学和工程中发现的各种非线性演化方程的可靠、直接和强大工具。