Hussain Ejaz, Shah Syed Asif Ali, Bariq Abdul, Li Zhao, Ahmad Muhammad Riaz, Ragab Adham E, Az-Zo'bi Emad A
Department of Mathematics, University of the Punjab, Quaid-e-Azam Campus, Lahore, 54590, Pakistan.
Department of Mathematics and Statistics, The University of Lahore, 1-km Defence Road, Lahore, 54000, Pakistan.
Sci Rep. 2024 Jun 12;14(1):13520. doi: 10.1038/s41598-024-60732-0.
This study aims to explore the precise resolution of the nonlinear Benjamin Bona Mahony Burgers (BBMB) equation, which finds application in a variety of nonlinear scientific disciplines including fluid dynamics, shock generation, wave transmission, and soliton theory. Within this paper, we employ two versatile methodologies, specifically the extended expansion technique and the novel Kudryashov method, to identify the exact soliton solutions of the nonlinear BBMB equation. The solutions we discovered involve trigonometric functions, hyperbolic functions, and rational functions. The uniqueness of this research lies in uncovering the bright soliton, kink wave solution, and periodic wave solution, and conducting stability analysis. Furthermore, the solutions' graphical characteristics were explored through the utilization of the mathematical software Maple 2022 ( https://maplesoft.com/downloads/selectplatform.aspx?hash=61ab59890f2313b2241fde3423fd975e ). The system's physical interpretation is defined through various types of graphs, including contour graphs, 3D-surface graphs, and line graphs, which use appropriate parameter values. These recommended techniques hold significant importance and are applicable in diverse nonlinear evolutionary equations found in the field of nonlinear sciences for illustrating nonlinear physical models.
本研究旨在探索非线性本杰明·博纳·马奥尼·伯格斯(BBMB)方程的精确解,该方程在包括流体动力学、激波产生、波传播和孤子理论在内的各种非线性科学学科中都有应用。在本文中,我们采用两种通用方法,即扩展展开技术和新颖的库德里亚绍夫方法,来确定非线性BBMB方程的精确孤子解。我们发现的解涉及三角函数、双曲函数和有理函数。本研究的独特之处在于揭示了亮孤子、扭结波解和周期波解,并进行了稳定性分析。此外,通过使用数学软件Maple 2022(https://maplesoft.com/downloads/selectplatform.aspx?hash=61ab59890f2313b2241fde3423fd975e)探索了解的图形特征。该系统的物理解释通过各种类型的图形来定义,包括等高线图、三维表面图和线图,这些图形使用了适当的参数值。这些推荐的技术具有重要意义,适用于非线性科学领域中各种非线性演化方程,用于阐明非线性物理模型。