Suppr超能文献

使用两种通用技术对本杰明·博纳·马奥尼·伯格方程进行孤子解和稳定性分析。

Solitonic solutions and stability analysis of Benjamin Bona Mahony Burger equation using two versatile techniques.

作者信息

Hussain Ejaz, Shah Syed Asif Ali, Bariq Abdul, Li Zhao, Ahmad Muhammad Riaz, Ragab Adham E, Az-Zo'bi Emad A

机构信息

Department of Mathematics, University of the Punjab, Quaid-e-Azam Campus, Lahore, 54590, Pakistan.

Department of Mathematics and Statistics, The University of Lahore, 1-km Defence Road, Lahore, 54000, Pakistan.

出版信息

Sci Rep. 2024 Jun 12;14(1):13520. doi: 10.1038/s41598-024-60732-0.

Abstract

This study aims to explore the precise resolution of the nonlinear Benjamin Bona Mahony Burgers (BBMB) equation, which finds application in a variety of nonlinear scientific disciplines including fluid dynamics, shock generation, wave transmission, and soliton theory. Within this paper, we employ two versatile methodologies, specifically the extended expansion technique and the novel Kudryashov method, to identify the exact soliton solutions of the nonlinear BBMB equation. The solutions we discovered involve trigonometric functions, hyperbolic functions, and rational functions. The uniqueness of this research lies in uncovering the bright soliton, kink wave solution, and periodic wave solution, and conducting stability analysis. Furthermore, the solutions' graphical characteristics were explored through the utilization of the mathematical software Maple 2022 ( https://maplesoft.com/downloads/selectplatform.aspx?hash=61ab59890f2313b2241fde3423fd975e ). The system's physical interpretation is defined through various types of graphs, including contour graphs, 3D-surface graphs, and line graphs, which use appropriate parameter values. These recommended techniques hold significant importance and are applicable in diverse nonlinear evolutionary equations found in the field of nonlinear sciences for illustrating nonlinear physical models.

摘要

本研究旨在探索非线性本杰明·博纳·马奥尼·伯格斯(BBMB)方程的精确解,该方程在包括流体动力学、激波产生、波传播和孤子理论在内的各种非线性科学学科中都有应用。在本文中,我们采用两种通用方法,即扩展展开技术和新颖的库德里亚绍夫方法,来确定非线性BBMB方程的精确孤子解。我们发现的解涉及三角函数、双曲函数和有理函数。本研究的独特之处在于揭示了亮孤子、扭结波解和周期波解,并进行了稳定性分析。此外,通过使用数学软件Maple 2022(https://maplesoft.com/downloads/selectplatform.aspx?hash=61ab59890f2313b2241fde3423fd975e)探索了解的图形特征。该系统的物理解释通过各种类型的图形来定义,包括等高线图、三维表面图和线图,这些图形使用了适当的参数值。这些推荐的技术具有重要意义,适用于非线性科学领域中各种非线性演化方程,用于阐明非线性物理模型。

相似文献

3
On traveling wave solutions with stability and phase plane analysis for the modified Benjamin-Bona-Mahony equation.
PLoS One. 2024 Jul 2;19(7):e0306196. doi: 10.1371/journal.pone.0306196. eCollection 2024.
4
Solitary wave solutions of the time fractional Benjamin Bona Mahony Burger equation.
Sci Rep. 2024 Jun 25;14(1):14596. doi: 10.1038/s41598-024-65471-w.
6
A new implementation of a novel analytical method for finding the analytical solutions of the (2+1)-dimensional KP-BBM equation.
Heliyon. 2023 Apr 24;9(5):e15690. doi: 10.1016/j.heliyon.2023.e15690. eCollection 2023 May.
7
Solitary and periodic wave solutions to the family of new 3D fractional WBBM equations in mathematical physics.
Heliyon. 2021 Jul 7;7(7):e07483. doi: 10.1016/j.heliyon.2021.e07483. eCollection 2021 Jul.
8
Dynamical exploration of optical soliton solutions for M-fractional Paraxial wave equation.
PLoS One. 2024 Feb 29;19(2):e0299573. doi: 10.1371/journal.pone.0299573. eCollection 2024.

引用本文的文献

1
Exploring the wave's structures to the nonlinear coupled system arising in surface geometry.
Sci Rep. 2025 Apr 4;15(1):11624. doi: 10.1038/s41598-024-84657-w.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验