Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, L. Pasteura 5, 02-093 Warsaw, Poland.
Institute of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, PL-02668 Warsaw, Poland.
J Phys Chem Lett. 2024 May 16;15(19):5024-5033. doi: 10.1021/acs.jpclett.4c00312. Epub 2024 May 2.
The diffusion coefficients of globular and fully unfolded proteins can be predicted with high accuracy solely from their mass or chain length. However, this approach fails for intrinsically disordered proteins (IDPs) containing structural domains. We propose a rapid predictive methodology for estimating the diffusion coefficients of IDPs. The methodology uses accelerated conformational sampling based on self-avoiding random walks and includes hydrodynamic interactions between coarse-grained protein subunits, modeled using the generalized Rotne-Prager-Yamakawa approximation. To estimate the hydrodynamic radius, we rely on the minimum dissipation approximation recently introduced by Cichocki et al. Using a large set of experimentally measured hydrodynamic radii of IDPs over a wide range of chain lengths and domain contributions, we demonstrate that our predictions are more accurate than the Kirkwood approximation and phenomenological approaches. Our technique may prove to be valuable in predicting the hydrodynamic properties of both fully unstructured and multidomain disordered proteins.
球状和完全展开的蛋白质的扩散系数可以仅通过其质量或链长来高精度地预测。然而,对于含有结构域的固有无序蛋白质 (IDP),这种方法并不适用。我们提出了一种快速预测 IDP 扩散系数的方法。该方法使用基于自回避随机行走的加速构象采样,并包括使用广义 Rotne-Prager-Yamakawa 近似模型化的粗粒蛋白亚基之间的流体动力学相互作用。为了估计流体动力学半径,我们依赖于 Cichocki 等人最近提出的最小耗散近似。使用广泛的实验测量的 IDP 流体动力学半径,涵盖了广泛的链长和结构域贡献范围,我们证明了我们的预测比 Kirkwood 近似和唯象方法更准确。我们的技术可能在预测完全无结构和多结构域无序蛋白质的流体动力学性质方面具有价值。