Department of Pharmaceutical Chemistry and Bioanalytics, Martin-Luther-University Halle-Wittenberg, 06120 Halle, Germany.
Center for Structural Mass Spectrometry, Martin-Luther-University Halle-Wittenberg, 06120 Halle, Germany.
Anal Chem. 2024 May 14;96(19):7373-7379. doi: 10.1021/acs.analchem.4c00829. Epub 2024 May 2.
Cross-linking mass spectrometry (XL-MS) has evolved into a pivotal technique for probing protein interactions. This study describes the implementation of Parallel Accumulation-Serial Fragmentation (PASEF) on timsTOF instruments, enhancing the detection and analysis of protein interactions by XL-MS. Addressing the challenges in XL-MS, such as the interpretation of complex spectra, low abundant cross-linked peptides, and a data acquisition bias, our current study integrates a peptide-centric approach for the analysis of XL-MS data and presents the foundation for integrating data-independent acquisition (DIA) in XL-MS with a vendor-neutral and open-source platform. A novel workflow is described for processing data-dependent acquisition (DDA) of PASEF-derived information. For this, software by Bruker Daltonics is used, enabling the conversion of these data into a format that is compatible with MeroX and Skyline software tools. Our approach significantly improves the identification of cross-linked products from complex mixtures, allowing the XL-MS community to overcome current analytical limitations.
交联质谱(XL-MS)已经发展成为探测蛋白质相互作用的关键技术。本研究描述了在 timsTOF 仪器上实施平行累积-串联碎裂(PASEF),通过 XL-MS 增强蛋白质相互作用的检测和分析。针对 XL-MS 中的挑战,如复杂谱图的解释、低丰度交联肽和数据采集偏差,我们目前的研究整合了基于肽的方法来分析 XL-MS 数据,并为在 XL-MS 中整合数据非依赖性采集(DIA)提供了基础,采用了供应商中立和开源的平台。本文还描述了用于处理 PASEF 衍生信息的依赖数据采集(DDA)的新工作流程。为此,使用 Bruker Daltonics 的软件将这些数据转换为与 MeroX 和 Skyline 软件工具兼容的格式。我们的方法显著提高了从复杂混合物中鉴定交联产物的能力,使 XL-MS 社区能够克服当前的分析限制。