Suppr超能文献

OpenPepXL:一种用于 XL-MS 中交联肽敏感鉴定的开源工具。

OpenPepXL: An Open-Source Tool for Sensitive Identification of Cross-Linked Peptides in XL-MS.

机构信息

Biomolecular Interactions, Max Planck Institute for Developmental Biology, Tübingen, Germany; Institute for Bioinformatics and Medical Informatics, University of Tübingen, Tübingen, Germany; Applied Bioinformatics, Dept. of Computer Science, University of Tübingen, Tübingen, Germany.

Biomolecular Interactions, Max Planck Institute for Developmental Biology, Tübingen, Germany; Institute for Bioinformatics and Medical Informatics, University of Tübingen, Tübingen, Germany; Applied Bioinformatics, Dept. of Computer Science, University of Tübingen, Tübingen, Germany; Center for Women's Health, University Clinic Tübingen, Tübingen, Germany.

出版信息

Mol Cell Proteomics. 2020 Dec;19(12):2157-2168. doi: 10.1074/mcp.TIR120.002186. Epub 2020 Oct 16.

Abstract

Cross-linking MS (XL-MS) has been recognized as an effective source of information about protein structures and interactions. In contrast to regular peptide identification, XL-MS has to deal with a quadratic search space, where peptides from every protein could potentially be cross-linked to any other protein. To cope with this search space, most tools apply different heuristics for search space reduction. We introduce a new open-source XL-MS database search algorithm, OpenPepXL, which offers increased sensitivity compared with other tools. OpenPepXL searches the full search space of an XL-MS experiment without using heuristics to reduce it. Because of efficient data structures and built-in parallelization OpenPepXL achieves excellent runtimes and can also be deployed on large compute clusters and cloud services while maintaining a slim memory footprint. We compared OpenPepXL to several other commonly used tools for identification of noncleavable labeled and label-free cross-linkers on a diverse set of XL-MS experiments. In our first comparison, we used a data set from a fraction of a cell lysate with a protein database of 128 targets and 128 decoys. At 5% FDR, OpenPepXL finds from 7% to over 50% more unique residue pairs (URPs) than other tools. On data sets with available high-resolution structures for cross-link validation OpenPepXL reports from 7% to over 40% more structurally validated URPs than other tools. Additionally, we used a synthetic peptide data set that allows objective validation of cross-links without relying on structural information and found that OpenPepXL reports at least 12% more validated URPs than other tools. It has been built as part of the OpenMS suite of tools and supports Windows, macOS, and Linux operating systems. OpenPepXL also supports the MzIdentML 1.2 format for XL-MS identification results. It is freely available under a three-clause BSD license at https://openms.org/openpepxl.

摘要

交联质谱(XL-MS)已被认为是获取蛋白质结构和相互作用信息的有效来源。与常规肽鉴定不同,XL-MS 必须处理二次搜索空间,其中每个蛋白质的肽都有可能与任何其他蛋白质交联。为了应对这个搜索空间,大多数工具都应用了不同的启发式方法来减少搜索空间。我们引入了一种新的开源 XL-MS 数据库搜索算法 OpenPepXL,与其他工具相比,它具有更高的灵敏度。OpenPepXL 无需使用启发式方法来减少搜索空间,即可搜索 XL-MS 实验的完整搜索空间。由于高效的数据结构和内置的并行化,OpenPepXL 实现了出色的运行时性能,并且可以在大型计算集群和云服务上部署,同时保持精简的内存占用。我们将 OpenPepXL 与其他几种常用于鉴定不可切割标记和无标记交联剂的工具进行了比较,这些工具用于多种 XL-MS 实验。在我们的第一次比较中,我们使用了来自细胞裂解物一部分的数据集,该数据集的蛋白质数据库有 128 个靶标和 128 个诱饵。在 FDR 为 5%的情况下,OpenPepXL 比其他工具发现的独特残基对(URP)多 7%至 50%以上。在具有交联验证的高分辨率结构的数据集上,OpenPepXL 报告的结构验证 URP 比其他工具多 7%至 40%以上。此外,我们使用了一个合成肽数据集,该数据集允许在不依赖结构信息的情况下对交联进行客观验证,发现 OpenPepXL 报告的验证 URP 比其他工具多至少 12%。它是作为 OpenMS 工具套件的一部分构建的,支持 Windows、macOS 和 Linux 操作系统。OpenPepXL 还支持 MzIdentML 1.2 格式的 XL-MS 鉴定结果。它在 https://openms.org/openpepxl 上以三条款 BSD 许可证免费提供。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8bc4/7710140/d5771e550b62/SB-MCPJ200062F009.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验