Chakraborti Himadri, Gorini Cosimo, Knothe Angelika, Liu Ming-Hao, Makk Péter, Parmentier François D, Perconte David, Richter Klaus, Roulleau Preden, Sacépé Benjamin, Schönenberger Christian, Yang Wenmin
Université Paris-Saclay, CEA, CNRS, SPEC, 91191 Gif-sur-Yvette, France.
Institut für Theoretische Physik, Universität Regensburg, D-93040 Regensburg, Germany.
J Phys Condens Matter. 2024 Jul 1;36(39). doi: 10.1088/1361-648X/ad46bc.
In the last decade, graphene has become an exciting platform for electron optical experiments, in some aspects superior to conventional two-dimensional electron gases (2DEGs). A major advantage, besides the ultra-large mobilities, is the fine control over the electrostatics, which gives the possibility of realising gap-less and compact p-n interfaces with high precision. The latter host non-trivial states,, snake states in moderate magnetic fields, and serve as building blocks of complex electron interferometers. Thanks to the Dirac spectrum and its non-trivial Berry phase, the internal (valley and sublattice) degrees of freedom, and the possibility to tailor the band structure using proximity effects, such interferometers open up a completely new playground based on novel device architectures. In this review, we introduce the theoretical background of graphene electron optics, fabrication methods used to realise electron-optical devices, and techniques for corresponding numerical simulations. Based on this, we give a comprehensive review of ballistic transport experiments and simple building blocks of electron optical devices both in single and bilayer graphene, highlighting the novel physics that is brought in compared to conventional 2DEGs. After describing the different magnetic field regimes in graphene p-n junctions and nanostructures, we conclude by discussing the state of the art in graphene-based Mach-Zender and Fabry-Perot interferometers.
在过去十年中,石墨烯已成为电子光学实验的一个令人兴奋的平台,在某些方面优于传统的二维电子气(2DEG)。除了超大迁移率之外,一个主要优势是对静电学的精细控制,这使得能够高精度地实现无间隙且紧凑的p-n界面。后者承载着非平凡态,如在中等磁场中的蛇形态,并作为复杂电子干涉仪的构建模块。由于狄拉克谱及其非平凡的贝里相位、内部(谷和子晶格)自由度以及利用近邻效应调整能带结构的可能性,此类干涉仪基于新颖的器件架构开辟了一个全新的领域。在本综述中,我们介绍了石墨烯电子光学的理论背景、用于实现电子光学器件的制造方法以及相应数值模拟的技术。基于此,我们全面综述了单层和双层石墨烯中的弹道输运实验以及电子光学器件的简单构建模块,突出了与传统2DEG相比所带来的新物理现象。在描述了石墨烯p-n结和纳米结构中的不同磁场区域后,我们通过讨论基于石墨烯的马赫-曾德尔干涉仪和法布里-珀罗干涉仪的技术现状来结束本文。