Department of Biological Sciences, Texas Tech University. Lubbock, TX, USA.
Department of Zoology, Denver Museum of Nature & Science, Denver, CO, USA.
Mol Phylogenet Evol. 2024 Jul;196:108088. doi: 10.1016/j.ympev.2024.108088. Epub 2024 May 1.
The nonrandom distribution of chromosomal characteristics and functional elements-genomic architecture-impacts the relative strengths and impacts of population genetic processes across the genome. Due to this relationship, genomic architecture has the potential to shape variation in population genetic structure across the genome. Population genetic structure has been shown to vary across the genome in a variety of taxa, but this body of work has largely focused on pairwise population genomic comparisons between closely related taxa. Here, we used whole genome sequencing of seven phylogeographically structured populations of a North American songbird, the Brown Creeper (Certhia americana), to determine the impacts of genomic architecture on phylogeographic structure variation across the genome. Using multiple methods to infer phylogeographic structure-ordination, clustering, and phylogenetic methods-we found that recombination rate variation explained a large proportion of phylogeographic structure variation. Genomic regions with low recombination showed phylogeographic structure consistent with the genome-wide pattern. In regions with high recombination, we found strong phylogeographic structure, but with discordant patterns relative to the genome-wide pattern. In regions with high recombination rate, we found that populations with small effective population sizes evolve relatively more rapidly than larger populations, leading to discordant signatures of phylogeographic structure. These results suggest that the interplay between recombination rate variation and effective population sizes shape the relative impacts of selection and genetic drift in different parts of the genome. Overall, the combined interactions of population genetic processes, genomic architecture, and effective population sizes shape patterns of variability in phylogeographic structure across the genome of the Brown Creeper.
染色体特征和功能元件的非随机分布——基因组结构——影响了群体遗传过程在整个基因组中的相对强度和影响。由于这种关系,基因组结构有可能塑造整个基因组中种群遗传结构的变化。已经在许多分类群中表明,种群遗传结构在基因组中存在差异,但这方面的工作主要集中在密切相关的分类群之间的成对种群基因组比较上。在这里,我们使用了北美鸣禽棕煌旋木雀(Certhia americana)的七个地理结构种群的全基因组测序,以确定基因组结构对整个基因组中地理结构变化的影响。我们使用多种方法来推断地理结构——有序聚类、聚类和系统发育方法——发现重组率变化解释了很大一部分地理结构变化。重组率低的基因组区域表现出与全基因组模式一致的地理结构。在重组率高的区域,我们发现了强烈的地理结构,但与全基因组模式不一致。在高重组率的区域,我们发现有效种群规模较小的种群比大种群进化得相对较快,导致地理结构的不一致特征。这些结果表明,重组率变化和有效种群大小之间的相互作用塑造了不同基因组区域选择和遗传漂变的相对影响。总的来说,群体遗传过程、基因组结构和有效种群大小的综合相互作用塑造了棕煌旋木雀基因组中地理结构变异性的模式。