Santin Lauriane G, Moreira Lara F, Oliveira Nathan V C, Paiva Vitória L A, Ribeiro Marina R, Oliveira Solemar S, Napolitano Hamilton B
Laboratório de Novos Materiais, Universidade Evangélica de Goiás, Anápolis, GO, Brazil.
Grupo de Química Teórica E Estrutural de Anápolis, Universidade Estadual de Goiás, Anápolis, GO, Brazil.
J Mol Model. 2024 May 3;30(5):157. doi: 10.1007/s00894-024-05951-y.
The advancement in the development of second-generation drugs in the field of antihistamines represents a significant milestone in the management of allergic diseases, targeting the effects of histamine. The efficacy of bilastine in treating allergic disorders has sparked interest in investigating its polymorphism, a crucial property that impacts quality, safety, and effectiveness as per regulatory guidelines. This study examines the polymorphism of bilastine, focusing on two crystalline forms labeled as Form I and Form II. Utilizing advanced analytical techniques, the research explores the structural characteristics and molecular interactions within these forms. Geometric parameters, such as bond lengths, bond angles, and torsion angles, are examined to comprehend molecular conformations and crystal packing arrangements. Hydrogen bonding, covalent bonds, and van der Waals forces contribute to the unique supramolecular arrangements in these forms. This study provides a significant contribution to understanding bilastine's polymorphism, offering critical insights to researchers and regulatory bodies to ensure the quality, efficacy, and safety of antihistamine products.
The molecular conformation of two bilastine forms was obtained through DFT with the exchange-correlation functional M06-2X and the 6-311 + + G(d,p) basis set, and the results were compared with the experimental X-ray. The atomic coordinates were obtained directly from the crystalline structures, and charge transfer was also investigated using frontier molecular orbitals (HOMO and LUMO), and MEP map in order to evaluate the energies associated with charge transfers and regions of high electron affinity. The geometric and topological parameters and intermolecular interactions in the crystals were analyzed using Hirshfeld Surface.
抗组胺药领域第二代药物的开发进展是过敏性疾病管理中的一个重要里程碑,其针对组胺的作用。比拉斯汀治疗过敏性疾病的疗效引发了对其多晶型的研究兴趣,根据监管指南,这是一种影响质量、安全性和有效性的关键特性。本研究考察比拉斯汀的多晶型,重点关注标记为晶型I和晶型II的两种晶型。利用先进的分析技术,该研究探索了这些晶型中的结构特征和分子间相互作用。研究了键长、键角和扭转角等几何参数,以了解分子构象和晶体堆积排列。氢键、共价键和范德华力促成了这些晶型中独特的超分子排列。本研究为理解比拉斯汀的多晶型做出了重大贡献,为研究人员和监管机构提供了关键见解,以确保抗组胺产品的质量、疗效和安全性。
通过密度泛函理论(DFT),采用交换相关泛函M06-2X和6-311++G(d,p)基组获得两种比拉斯汀晶型的分子构象,并将结果与实验X射线结果进行比较。直接从晶体结构中获得原子坐标,还使用前线分子轨道(HOMO和LUMO)以及分子静电势(MEP)图研究电荷转移,以评估与电荷转移相关的能量和高电子亲和力区域。使用 Hirshfeld 表面分析晶体中的几何和拓扑参数以及分子间相互作用。