Gber Terkumbur E, Louis Hitler, Owen Aniekan E, Etinwa Benjamin E, Benjamin Innocent, Asogwa Fredrick C, Orosun Muyiwa M, Eno Ededet A
Computational and Bio-Simulation Research Group, University of Calabar Calabar Nigeria
Department of Pure and Applied Chemistry, Faculty of Physical Sciences, University of Calabar Calabar Nigeria.
RSC Adv. 2022 Sep 13;12(40):25992-26010. doi: 10.1039/d2ra04028j. eCollection 2022 Sep 12.
2D transition metal dichalcogenide MoS monolayer quantum dots (MoS-QD) and their doped boron (B@MoS-QD), nitrogen (N@MoS-QD), phosphorus (P@MoS-QD), and silicon (Si@MoS-QD) surfaces have been theoretically investigated using density functional theory (DFT) computation to understand their mechanistic sensing ability, such as conductivity, selectivity, and sensitivity toward NH gas. The results from electronic properties showed that P@MoS-QD had the lowest energy gap, which indicated an increase in electrical conductivity and better adsorption behavior. By carrying out comparative adsorption studies using m062-X, ωB97XD, B3LYP, and PBE0 methods at the 6-311G++(d,p) level of theory, the most negative values were observed from ωB97XD for the P@MoS-QD surface, signifying the preferred chemisorption surface for NH detection. The mechanistic studies provided in this study also indicate that the P@MoS-QD dopant is a promising sensing material for monitoring ammonia gas in the real world. We hope this research work will provide informative knowledge for experimental researchers to realize the potential of MoS dopants, specifically the P@MoS-QD surface, as a promising candidate for sensors to detect gas.
二维过渡金属二硫属化物MoS单层量子点(MoS-QD)及其掺杂硼(B@MoS-QD)、氮(N@MoS-QD)、磷(P@MoS-QD)和硅(Si@MoS-QD)的表面已通过密度泛函理论(DFT)计算进行了理论研究,以了解它们对NH气体的传导性、选择性和灵敏度等机械传感能力。电子性质的结果表明,P@MoS-QD的能隙最低,这表明其电导率增加且吸附行为更好。通过在理论水平6-311G++(d,p)上使用m062-X、ωB97XD、B3LYP和PBE0方法进行比较吸附研究,在P@MoS-QD表面观察到ωB97XD的负值最大,这表明该表面是用于NH检测的首选化学吸附表面。本研究中提供的机理研究还表明,P@MoS-QD掺杂剂是一种在现实世界中监测氨气的有前景的传感材料。我们希望这项研究工作能为实验研究人员提供信息性知识,以实现MoS掺杂剂的潜力,特别是P@MoS-QD表面,作为检测气体传感器的有前景候选材料。