Suppr超能文献

用于NH₃气体检测的杂原子(硅、硼、氮和磷)掺杂二维单层二硫化钼

Heteroatoms (Si, B, N, and P) doped 2D monolayer MoS for NH gas detection.

作者信息

Gber Terkumbur E, Louis Hitler, Owen Aniekan E, Etinwa Benjamin E, Benjamin Innocent, Asogwa Fredrick C, Orosun Muyiwa M, Eno Ededet A

机构信息

Computational and Bio-Simulation Research Group, University of Calabar Calabar Nigeria

Department of Pure and Applied Chemistry, Faculty of Physical Sciences, University of Calabar Calabar Nigeria.

出版信息

RSC Adv. 2022 Sep 13;12(40):25992-26010. doi: 10.1039/d2ra04028j. eCollection 2022 Sep 12.

Abstract

2D transition metal dichalcogenide MoS monolayer quantum dots (MoS-QD) and their doped boron (B@MoS-QD), nitrogen (N@MoS-QD), phosphorus (P@MoS-QD), and silicon (Si@MoS-QD) surfaces have been theoretically investigated using density functional theory (DFT) computation to understand their mechanistic sensing ability, such as conductivity, selectivity, and sensitivity toward NH gas. The results from electronic properties showed that P@MoS-QD had the lowest energy gap, which indicated an increase in electrical conductivity and better adsorption behavior. By carrying out comparative adsorption studies using m062-X, ωB97XD, B3LYP, and PBE0 methods at the 6-311G++(d,p) level of theory, the most negative values were observed from ωB97XD for the P@MoS-QD surface, signifying the preferred chemisorption surface for NH detection. The mechanistic studies provided in this study also indicate that the P@MoS-QD dopant is a promising sensing material for monitoring ammonia gas in the real world. We hope this research work will provide informative knowledge for experimental researchers to realize the potential of MoS dopants, specifically the P@MoS-QD surface, as a promising candidate for sensors to detect gas.

摘要

二维过渡金属二硫属化物MoS单层量子点(MoS-QD)及其掺杂硼(B@MoS-QD)、氮(N@MoS-QD)、磷(P@MoS-QD)和硅(Si@MoS-QD)的表面已通过密度泛函理论(DFT)计算进行了理论研究,以了解它们对NH气体的传导性、选择性和灵敏度等机械传感能力。电子性质的结果表明,P@MoS-QD的能隙最低,这表明其电导率增加且吸附行为更好。通过在理论水平6-311G++(d,p)上使用m062-X、ωB97XD、B3LYP和PBE0方法进行比较吸附研究,在P@MoS-QD表面观察到ωB97XD的负值最大,这表明该表面是用于NH检测的首选化学吸附表面。本研究中提供的机理研究还表明,P@MoS-QD掺杂剂是一种在现实世界中监测氨气的有前景的传感材料。我们希望这项研究工作能为实验研究人员提供信息性知识,以实现MoS掺杂剂的潜力,特别是P@MoS-QD表面,作为检测气体传感器的有前景候选材料。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f50/9468912/a5c00205c501/d2ra04028j-f1.jpg

相似文献

1
Heteroatoms (Si, B, N, and P) doped 2D monolayer MoS for NH gas detection.
RSC Adv. 2022 Sep 13;12(40):25992-26010. doi: 10.1039/d2ra04028j. eCollection 2022 Sep 12.
2
Molecular simulation of Cu, Ag, and Au-decorated Si-doped graphene quantum dots (Si@QD) nanostructured as sensors for SO trapping.
J Mol Graph Model. 2023 Nov;124:108551. doi: 10.1016/j.jmgm.2023.108551. Epub 2023 Jun 29.
4
Electronic and Magnetic Properties of Encapsulated MoS2 Quantum Dots: The Case of Noble Metal Nanoparticle Dopants.
Chemphyschem. 2016 Apr 18;17(8):1180-94. doi: 10.1002/cphc.201501131. Epub 2016 Feb 19.
5
Highly Sensitive Gas Sensor for Detection of Air Decomposition Pollutant (CO, NO): Popular Metal Oxide (ZnO, TiO)-Doped MoS Surface.
ACS Appl Mater Interfaces. 2024 Jan 24;16(3):3674-3684. doi: 10.1021/acsami.3c15103. Epub 2024 Jan 10.
7
Ru-Doped MoS Monolayer for Exhaled Breath Detection on Early Lung Cancer Diagnosis: A First-Principles Investigation.
ACS Omega. 2024 Mar 15;9(12):13951-13959. doi: 10.1021/acsomega.3c09191. eCollection 2024 Mar 26.
8
Formaldehyde Molecules Adsorption on Zn Doped Monolayer MoS: A First-Principles Calculation.
Front Chem. 2021 Apr 16;8:605311. doi: 10.3389/fchem.2020.605311. eCollection 2020.

引用本文的文献

1
Insights on molecular modeling and supramolecular arrangement of bilastine polymorphs.
J Mol Model. 2024 May 3;30(5):157. doi: 10.1007/s00894-024-05951-y.
4
Exploring the potential of single-metals (Cu, Ni, Zn) decorated AlN nanostructures as sensors for flutamide anticancer drug.
Heliyon. 2023 Oct 11;9(10):e20682. doi: 10.1016/j.heliyon.2023.e20682. eCollection 2023 Oct.
8
Modeling of magnesium-decorated graphene quantum dot nanostructure for trapping AsH, PH and NH gases.
RSC Adv. 2023 May 3;13(20):13624-13641. doi: 10.1039/d3ra01279d. eCollection 2023 May 2.
9
Heteroatom (B, N, P, and S)-Doped Cyclodextrin as a Hydroxyurea (HU) Drug Nanocarrier: A Computational Approach.
ACS Omega. 2023 Mar 8;8(11):9861-9872. doi: 10.1021/acsomega.2c06630. eCollection 2023 Mar 21.
10
Transition Metal-Decorated BN-X (X = Au, Cu, Ni, Os, Pt, and Zn) Nanoclusters as Biosensors for Carboplatin.
ACS Omega. 2023 Mar 7;8(11):10006-10021. doi: 10.1021/acsomega.2c07250. eCollection 2023 Mar 21.

本文引用的文献

1
Environmentally hazardous gas sensing ability of MoS-nanotubes: an insight from the electronic structure and transport properties.
Nanoscale Adv. 2021 Jul 6;3(15):4528-4535. doi: 10.1039/d0na01037e. eCollection 2021 Jul 27.
2
Carbon dots: a novel platform for biomedical applications.
Nanoscale Adv. 2021 Dec 13;4(2):353-376. doi: 10.1039/d1na00559f. eCollection 2022 Jan 18.
3
4
Graphene-based nanocomposites and nanohybrids for the abatement of agro-industrial pollutants in aqueous environments.
Environ Pollut. 2022 Sep 1;308:119557. doi: 10.1016/j.envpol.2022.119557. Epub 2022 Jun 13.
5
Intensity and Duration of Physical Activity and Cardiorespiratory Fitness.
Pediatrics. 2022 Jul 1;150(1). doi: 10.1542/peds.2021-056003.
7
Giant bulk photovoltaic effect driven by the wall-to-wall charge shift in WS nanotubes.
Nat Commun. 2022 Jun 10;13(1):3237. doi: 10.1038/s41467-022-31018-8.
8
Effectiveness and mechanisms of the adsorption of carbendazim from wastewater onto commercial activated carbon.
Chemosphere. 2022 Oct;304:135231. doi: 10.1016/j.chemosphere.2022.135231. Epub 2022 Jun 7.
9
Magnetically Doped Molybdenum Disulfide Layers for Enhanced Carbon Dioxide Capture.
ACS Appl Mater Interfaces. 2022 Jun 22;14(24):27799-27813. doi: 10.1021/acsami.2c01820. Epub 2022 Jun 10.
10
Pristine PN junction toward atomic layer devices.
Light Sci Appl. 2022 Jun 6;11(1):170. doi: 10.1038/s41377-022-00814-8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验